202 resultados para Excitation controller
Resumo:
Experimental data are presented for the scattering of electrons by H2O between 17 and 250 meV impact energy. These results are used in conjunction with a generally applicable method, based on a quantum defect theory approach to electron-polar molecule collisions, to derive the first set of data for state-to-state rotationally inelastic scattering cross sections based on experimental values.
Resumo:
In a recent Letter to the Editor (J Rao, D Delande and K T Taylor 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L391-9) we made a brief first report of our quantal and classical calculations for the hydrogen atom in crossed electric and magnetic fields at constant scaled energy and constant scaled electric field strength. A principal point of that communication was our statement that each and every peak in the Fourier transform of the scaled quantum photo-excitation spectrum for scaled energy value epsilon = -0.586 538 871028 43 and scaled electric value (f) over tilde = 0.068 537 846 207 618 71 could be identified with a scaled action value of a found and mapped-out closed orbit up to a scaled action of 20. In this follow-up paper, besides presenting full details of our quantum and classical methods, we set out the scaled action values of all 317 closed orbits involved, together with the geometries of many.
Resumo:
Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms(1). This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected(2). Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly polarized radiation(3). In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage 'shake-up' reaction(4). Here we report a unique combination of experimental techniques(5-8) that allows us to accurately measure the tunnel ionization probability for argon exposed to 50-fs laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry(7,8), equivalent to a homogenous electric field. Furthermore, circularly polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up(9). From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond extreme-ultraviolet-radiation sources(10). Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in vivo cells and nanoscale extreme-ultraviolet lithography.
Resumo:
Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems.
Resumo:
The probability of multiple ionization of krypton by 50 femtosecond circularly polarized laser pulses, independent of the optical focal geometry, has been obtained for the first time. The excellent agreement over the intensity range 100 TW cm-2 to 100 PW cm-2 with the recent predictions of Kornev et al (2003 Phys. Rev. A 68 043414) provides the first experimental confirmation that non-recollisional electronic excitation can occur in strong-field ionization. This is particularly true for higher stages of ionization, when the laser intensity exceeds 10 PW cm-2 as the energetic departure of the ionized electron(s) diabatically distorts the wavefunctions of the bound electrons. By scaling the probability of ionization by the focal volume, we discuss why this mechanism was not apparent in previous studies.
Resumo:
A hyperthermal hydrogen/deuterium atom beam source with a defined energy distribution has been employed to investigate the kinetically induced electron emission from noble metal surfaces. A monotonous increase in the emission yield was found for energies between 15 and 200 eV. This, along with an observed isotope effect, is described in terms of a model based on Boltzmann type electron energy distributions.