124 resultados para Evolution of lithium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is conflicting evidence concerning lithium’s effect on renal function. The aim is to clarify whether lithium affects kidney function and at what stage of treatment any effect may occur. Systematic review identified 23 studies split into three groups on which meta-analysis was performed to identify the following: A) lithium’s effect on renal function in cross-sectional case-control studies, B) studies of renal function before and after commencement on lithium, C) studies of longer term effect in those already established on lithium therapy. Group A showed a statistically significant increase of 5.7 µmol/L in creatinine in the study population compared with controls. Group B showed a non-statistically significant rise in creatinine (2.9 µmol/L) after a mean follow-up of 86 months. Group C showed a statistically significant increase in creatinine of 7.0 µmol/L over a mean duration of 64 months. An increase in creatinine of an average of 1.6 µmol/L/year on lithium was also identified in this group. Any lithium-associated increase in serum creatinine is quantitatively small and of questionable clinical significance. However, routine renal function monitoring of patients on lithium is essential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical and numerical investigation is presented of the behavior of a linearly polarized electromagnetic pulse as it propagates through a plasma. Considering a weakly relativistic regime, the system of one-dimensional fluid-Maxwell equations is reduced to a generalized nonlinear Schrodinger type equation, which is solved numerically using a split step Fourier method. The spatio-temporal evolution of an electromagnetic pulse is investigated. The evolution of the envelope amplitude of density harmonics is also studied. An electromagnetic pulse propagating through the plasma tends to broaden due to dispersion, while the nonlinear frequency shift is observed to slow down the pulse at a speed lower than the group velocity. Such nonlinear effects are more important for higher density plasmas. The pulse broadening factor is calculated numerically, and is shown to be related to the background plasma density. In particular, the broadening effect appears to be stronger for dense plasmas. The relation to existing results on electromagnetic pulses in laser plasmas is discussed. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatiotemporal pulse dynamics of a high-power relativistic laser pulse interacting with an electron-positron-ion plasmas is investigated theoretically and numerically. The occurrence of pulse compression is studied. The dependence of the mechanism on the concentration of the background ions in electron positron plasma is emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent experimental study, the beam intensity profile of the Vulcan petawatt laser beam was measured; it was found that only 20% of the energy was contained within the full width at half maximum of 6.9 mu m and 50% within 16 mu m, suggesting a long-tailed non-Gaussian transverse beam profile. A q-Gaussian distribution function was suggested therein to reproduce this behavior. The spatial beam profile dynamics of a q-Gaussian laser beam propagating in relativistic plasma is investigated in this article. A non-paraxial theory is employed, taking into account nonlinearity via the relativistic decrease of the plasma frequency. We have studied analytically and numerically the dynamics of a relativistically guided beam and its dependence on the q-parameter. Numerical simulation results are shown to trace the dependence of the focusing length on the q-Gaussian profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing, and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared local thermodynamic equilibrium line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find that the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH3, CH3OH, C2H2, and sulfur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a manner similar to that found when mixing is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure evolution of a 10Cr ferritic/martensitic heat-resistant steel during creep at 600°C was investigated in this work. Creep tests demonstrated that the 10Cr steel had higher creep strength than conventional ASME-P92 steel at 600°C. The microstructure after creep was studied by transmission electron microscopy, scanning electron microscopy and electron probe microanalysis. It was revealed that the martensitic laths were coarsened with time and eventually developed into subgrains after 8354 h. Laves phase was observed to grow and cluster along the prior austenite grain boundaries during creep and caused the fluctuation of solution and precipitation strengthening effects, which was responsible for the two slope changes on the creep rupture strength vs rupture time curve. It was also revealed that the microstructure evolution could be accelerated by stress, which resulted in the lower hardness in the deformed part of the creep specimen, compared with the aging part.