39 resultados para Euler discretization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the ways in which structural model parameter variability can influence aeroelastic stability. Previous work on formulating the stability calculation (with the Euler equations providing the aerodynamic predictions) is exploited to use Monte Carlo, interval, and perturbation calculations to allow this question to be investigated. Three routes are identified. The first involves variable normal-mode frequencies only. The second involves normal-mode frequencies and shapes. Finally, the third, in addition to normal-mode frequencies and shapes, also includes their influence on the static equilibrium. Previous work has suggested only considering the first route, which allows significant gains in computational efficiency if reduced-order models can be built for the aerodynamics. However, results in the current paper show that neglecting the mode-shape variation can give misleading results for the flutter-onset prediction, complicating the development of reduced aerodynamic models for variability analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a Spatio-temporal 2D Models Framework (STMF) for 2D-Pose tracking. Space and time are discretized and a mixture of probabilistic "local models" is learnt associating 2D Shapes and 2D Stick Figures. Those spatio-temporal models generalize well for a particular viewpoint and state of the tracked action but some spatio-temporal discontinuities can appear along a sequence, as a direct consequence of the discretization. To overcome the problem, we propose to apply a Rao-Blackwellized Particle Filter (RBPF) in the 2D-Pose eigenspace, thus interpolating unseen data between view-based clusters. The fitness to the images of the predicted 2D-Poses is evaluated combining our STMF with spatio-temporal constraints. A robust, fast and smooth human motion tracker is obtained by tracking only the few most important dimensions of the state space and by refining deterministically with our STMF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents the use of periodic arrays of freestanding slot frequency-selective screens (FSS) as a means for generating circularly polarised signals from an incident linearly polarised signal at normal incidence to the structure. Measured and simulated results for crossed, linear and various ring slot element shapes in single and double-layer polarisation convertor structures are presented for 10 GHz operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one-layer perforated screen design and that the rate of change is lower than the double-layer structures. An insertion loss of 0.34 dB can be achieved for the split circular ring double-layer periodic array, and of the three topologies presented the hexagonal split-ring polarisation convertor gives the lowest variation of AR with angle of incidence 1.8 dB/45° and 3.6 dB/45° for the single and double-screen FSS, respectively. In addition, their tolerance to angle of incidence variation is presented. The capability of the surfaces reported here as twist polariser or spatial isolator components has been demonstrated with up to -30 dB isolation between incident and re-reflected signals for the double-layer designs being measured. © 2010 The Institution of Engineering and Technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear interactions take place in most systems that arise in music acoustics, usually as a result of player-instrument coupling. Several time-stepping methods exist for the numerical simulation of such systems. These methods generally involve the discretization of the Newtonian description of the system. However, it is not always possible to prove the stability of the resulting algorithms, especially when dealing with systems where the underlying force is a non-analytic function of the phase space variables. On the other hand, if the discretization is carried out on the Hamiltonian description of the system, it is possible to prove the stability of the derived numerical schemes. This Hamiltonian approach is applied to a series of test models of single or multiple nonlinear collisions and the energetic properties of the derived schemes are discussed. After establishing that the schemes respect the principle of conservation of energy, a nonlinear single-reed model is formulated and coupled to a digital bore, in order to synthesize clarinet-like sounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonic metal welding can be used to join two metal foils. There are two different effects under ultrasonic welding. They are surface effect and volume effect. These two effects were validated under macro experiments. Then how to validate in micro test is seldom researched. EBSD method was used to research the microstructure evolution of AA6061 under ultrasonic welding. The image maps indicating all Euler angle and the correlated misorientation angle distribution of both original foil and welding sample were got by EBSD in order to understand how ultrasonic welding affect the grain orientation and microstructure. The test shows that after ultrasonic vibration, the grain size has little change. And ultrasonic vibration results in a very weak texture. FEM results also validate these conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an approach to compute transonic Limit Cycle O
scillations using a coupled Harmonic Balance formulation based on the Euler equations for fluid dynamics and finite element models. The paper will investigate the role of aerodynamic (shocks) and structural nonlinearities in driving the limit cycle behaviour. Part icular attention will be given to nonlinear interactions for subcritical LCOs. The Aero elastic Harmonic Balance formulation, allows for solutions of the coupled structural dynamics and CFD system at a reduced cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a continuous time Markov chain (CTMC) based sequential analytical approach for composite generation and transmission systems reliability assessment. The basic idea is to construct a CTMC model for the composite system. Based on this model, sequential analyses are performed. Various kinds of reliability indices can be obtained, including expectation, variance, frequency, duration and probability distribution. In order to reduce the dimension of the state space, traditional CTMC modeling approach is modified by merging all high order contingencies into a single state, which can be calculated by Monte Carlo simulation (MCS). Then a state mergence technique is developed to integrate all normal states to further reduce the dimension of the CTMC model. Moreover, a time discretization method is presented for the CTMC model calculation. Case studies are performed on the RBTS and a modified IEEE 300-bus test system. The results indicate that sequential reliability assessment can be performed by the proposed approach. Comparing with the traditional sequential Monte Carlo simulation method, the proposed method is more efficient, especially in small scale or very reliable power systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-dimensional continuum damage mechanics-based material model has been implemented in an implicit Finite Element code to simulate the progressive degradation of advanced composite materials. The damage model uses seven damage variables assigned to tensile, compressive and non-linear shear damage at a laminae level. The objectivity of the numerical discretization is assured using a smeared formulation. The material model was benchmarked against experimental uniaxial coupon tests and it is shown to reproduce key aspects observable during failure, such as the inclined fracture plane in matrix compression and the shear band in a ±45° tension specimen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transonic tests in linear cascade wind tunnels can suffer
from significant test section boundary interference effects in pitch. A slotted tailboard has been designed and optimised with an in-house Euler numerical method to reduce such ef- fects. Wind tunnel measurements on an overspeed Mach 1.27 discharge from a Rolls-Royce T2 cascade, featuring strong end-wall shock-induced interference, showed a 77% reduction in the flow pitchwise periodicity error with the optimised tail- board, with respect to the baseline open-jet cascade flow. Two-dimensional Euler predictions were also cross-validated against a three-dimensional Reynolds averaged computation, to explore the three-dimensionality of the discharge