125 resultados para Error estimate.
Resumo:
Tephra horizons are potentially perfect time markers for dating and cross-correlation among diverse Holocene palaeoenvironmental records such as ice cores and marine and terrestrial sequences, but we need to trust their age. Here we present a new age estimate of the Holocene Mjauvotn tephra A using accelerator mass spectrometry C-14 dates from two lakes on the Faroe Islands. With Bayesian age modelling it is dated to 6668-6533 cal. a BP (68.2% confidence interval) - significantly older and better constrained than the previous age. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
We investigated the role of visual feedback of task performance in visuomotor adaptation. Participants produced novel two degrees of freedom movements (elbow flexion-extension, forearm pronation-supination) to move a cursor towards visual targets. Following trials with no rotation, participants were exposed to a 60A degrees visuomotor rotation, before returning to the non-rotated condition. A colour cue on each trial permitted identification of the rotated/non-rotated contexts. Participants could not see their arm but received continuous and concurrent visual feedback (CF) of a cursor representing limb position or post-trial visual feedback (PF) representing the movement trajectory. Separate groups of participants who received CF were instructed that online modifications of their movements either were, or were not, permissible as a means of improving performance. Feedforward-mediated performance improvements occurred for both CF and PF groups in the rotated environment. Furthermore, for CF participants this adaptation occurred regardless of whether feedback modifications of motor commands were permissible. Upon re-exposure to the non-rotated environment participants in the CF, but not PF, groups exhibited post-training aftereffects, manifested as greater angular deviations from a straight initial trajectory, with respect to the pre-rotation trials. Accordingly, the nature of the performance improvements that occurred was dependent upon the timing of the visual feedback of task performance. Continuous visual feedback of task performance during task execution appears critical in realising automatic visuomotor adaptation through a recalibration of the visuomotor mapping that transforms visual inputs into appropriate motor commands.
Resumo:
The trophic link density and the stability of food webs are thought to be related, but the nature of this relation is controversial. This article introduces a method for estimating the link density from diet tables which do not cover the complete food web and do not resolve all diet items to species level. A simple formula for the error of this estimate is derived. Link density is determined as a function of a threshold diet fraction below which diet items are ignored (
Resumo:
Baited cameras are often used for abundance estimation wherever alternative techniques are precluded, e.g. in abyssal systems and areas such as reefs. This method has thus far used models of the arrival process that are deterministic and, therefore, permit no estimate of precision.
Furthermore, errors due to multiple counting of fish and missing those not seen by the camera have restricted the technique to using only the time of first arrival, leaving a lot of data redundant. Here, we reformulate the arrival process using a stochastic model, which allows the precision of abundance
estimates to be quantified. Assuming a non-gregarious, cross-current-scavenging fish, we show that prediction of abundance from first arrival time is extremely uncertain. Using example data, we show
that simple regression-based prediction from the initial (rising) slope of numbers at the bait gives good precision, accepting certain assumptions. The most precise abundance estimates were obtained
by including the declining phase of the time series, using a simple model of departures, and taking account of scavengers beyond the camera’s view, using a hidden Markov model.
Resumo:
The development of computer-based devices for music control has created a need to study how spectators understand new performance technologies and practices. As a part of a larger project examining how interactions with technology can be communicated to spectators, we present a model of a spectator's understanding of error by a performer. This model is broadly applicable throughout HCI, as interactions with technology are increasingly public and spectatorship is becoming more common.
Resumo:
Recently polymeric adsorbents have been emerging as highly effective alternatives to activated carbons for pollutant removal from industrial effluents. Poly(methyl methacrylate) (PMMA), polymerized using the atom transfer radical polymerization (ATRP) technique has been investigated for its feasibility to remove phenol from aqueous solution. Adsorption equilibrium and kinetic investigations were undertaken to evaluate the effect of contact time, initial concentration (10-90 mg/L), and temperature (25-55 degrees C). Phenol uptake was found to increase with increase in initial concentration and agitation time. The adsorption kinetics were found to follow the pseudo-second-order kinetic model. The intra-particle diffusion analysis indicated that film diffusion may be the rate controlling step in the removal process. Experimental equilibrium data were fitted to five different isotherm models namely Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Redlich-Peterson by non-linear least square regression and their goodness-of-fit evaluated in terms of mean relative error (MRE) and standard error of estimate (SEE). The adsorption equilibrium data were best represented by Freundlich and Redlich-Peterson isotherms. Thermodynamic parameters such as Delta G degrees and Delta H degrees indicated that the sorption process is exothermic and spontaneous in nature and that higher ambient temperature results in more favourable adsorption. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Microsatellite genotyping is a common DNA characterization technique in population, ecological and evolutionary genetics research. Since different alleles are sized relative to internal size-standards, different laboratories must calibrate and standardize allelic designations when exchanging data. This interchange of microsatellite data can often prove problematic. Here, 16 microsatellite loci were calibrated and standardized for the Atlantic salmon, Salmo salar, across 12 laboratories. Although inconsistencies were observed, particularly due to differences between migration of DNA fragments and actual allelic size ('size shifts'), inter-laboratory calibration was successful. Standardization also allowed an assessment of the degree and partitioning of genotyping error. Notably, the global allelic error rate was reduced from 0.05 ± 0.01 prior to calibration to 0.01 ± 0.002 post-calibration. Most errors were found to occur during analysis (i.e. when size-calling alleles; the mean proportion of all errors that were analytical errors across loci was 0.58 after calibration). No evidence was found of an association between the degree of error and allelic size range of a locus, number of alleles, nor repeat type, nor was there evidence that genotyping errors were more prevalent when a laboratory analyzed samples outside of the usual geographic area they encounter. The microsatellite calibration between laboratories presented here will be especially important for genetic assignment of marine-caught Atlantic salmon, enabling analysis of marine mortality, a major factor in the observed declines of this highly valued species.
Resumo:
We analyze the effect of a quantum error correcting code on the entanglement of encoded logical qubits in the presence of a dephasing interaction with a correlated environment. Such correlated reservoir introduces entanglement between physical qubits. We show that for short times the quantum error correction interprets such entanglement as errors and suppresses it. However, for longer time, although quantum error correction is no longer able to correct errors, it enhances the rate of entanglement production due to the interaction with the environment.
Resumo:
In this paper we present an empirical analysis of the residential demand for electricity using annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has examined residential energy consumption at the state level using annual or monthly data, focusing on the variation in price elasticities of demand across states or regions, but has failed to recognize or address two major issues. The first is that, when fitting dynamic panel models, the lagged consumption term in the right-hand side of the demand equation is endogenous. This has resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The second is that energy price is likely mismeasured.