37 resultados para Enrique Barba
Resumo:
The design, fabrication, and measured results are presented for a reconfigurable reflectarray antenna based on liquid crystals (LCs)which operates above 100 GHz. The antenna has been designed to provide beam scanning capabilities over a wide angular range, a large bandwidth,and reduced side-lobe level (SLL). Measured radiation patterns are in good agreement with simulations, and show that the antenna generates an electronically steerable beam in one plane over an angular range of 55◦ in the frequency band from 96 to 104 GHz. The SLL is lower than −13 dB for all the scan angles and −18 dB is obtained over 16% of the scan range. The measured performance is significantly better than previously published results for this class of electronically tunable antenna, and moreover, veri-fies the accuracy of the proposed procedure for LC modeling and antenna design.
Resumo:
As the complexity of computing systems grows, reliability and energy are two crucial challenges asking for holistic solutions. In this paper, we investigate the interplay among concurrency, power dissipation, energy consumption and voltage-frequency scaling for a key numerical kernel for the solution of sparse linear systems. Concretely, we leverage a task-parallel implementation of the Conjugate Gradient method, equipped with an state-of-the-art pre-conditioner embedded in the ILUPACK software, and target a low-power multi core processor from ARM.In addition, we perform a theoretical analysis on the impact of a technique like Near Threshold Voltage Computing (NTVC) from the points of view of increased hardware concurrency and error rate.
Resumo:
The end of Dennard scaling has promoted low power consumption into a firstorder concern for computing systems. However, conventional power conservation schemes such as voltage and frequency scaling are reaching their limits when used in performance-constrained environments. New technologies are required to break the power wall while sustaining performance on future processors. Low-power embedded processors and near-threshold voltage computing (NTVC) have been proposed as viable solutions to tackle the power wall in future computing systems. Unfortunately, these technologies may also compromise per-core performance and, in the case of NTVC, xreliability. These limitations would make them unsuitable for HPC systems and datacenters. In order to demonstrate that emerging low-power processing technologies can effectively replace conventional technologies, this study relies on ARM’s big.LITTLE processors as both an actual and emulation platform, and state-of-the-art implementations of the CG solver. For NTVC in particular, the paper describes how efficient algorithm-based fault tolerance schemes preserve the power and energy benefits of very low voltage operation.
Resumo:
The host launches an antimicrobial defense program upon infection. A long-held belief is that pathogens prevent host recognition by remodeling their surface in response to different host microenvironments. Yet direct evidence that this happens in vivo is lacking. Here we report that the pathogen Klebsiella pneumoniae modifies one of its surface molecules, the lipopolysaccharide, in the lungs of mice to evade immune surveillance. These in vivo-induced changes are lost in bacteria grown after isolation from the tissues. These lipopolysaccharide modifications contribute to survival in vivo and mediate resistance to colistin, one of the last options to treat multidrug-resistant Klebsiella. This work opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.
Resumo:
OBJECTIVE: Studies indicate an inverse association between ductal adenocarcinoma of the pancreas (PDAC) and nasal allergies. However, controversial findings are reported for the association with asthma. Understanding PDAC risk factors will help us to implement appropriate strategies to prevent, treat and diagnose this cancer. This study assessed and characterised the association between PDAC and asthma and corroborated existing reports regarding the association between allergies and PDAC risk.
DESIGN: Information about asthma and allergies was collated from 1297 PDAC cases and 1024 controls included in the PanGenEU case-control study. Associations between PDAC and atopic diseases were studied using multilevel logistic regression analysis. Meta-analyses of association studies on these diseases and PDAC risk were performed applying random-effects model.
RESULTS: Asthma was associated with lower risk of PDAC (OR 0.64, 95% CI 0.47 to 0.88), particularly long-standing asthma (>=17 years, OR 0.39, 95% CI 0.24 to 0.65). Meta-analysis of 10 case-control studies sustained our results (metaOR 0.73, 95% CI 0.59 to 0.89). Nasal allergies and related symptoms were associated with lower risk of PDAC (OR 0.66, 95% CI 0.52 to 0.83 and OR 0.59, 95% CI 0.46 to 0.77, respectively). These results were supported by a meta-analysis of nasal allergy studies (metaOR 0.6, 95% CI 0.5 to 0.72). Skin allergies were not associated with PDAC risk.
CONCLUSIONS: This study shows a consistent inverse association between PDAC and asthma and nasal allergies, supporting the notion that atopic diseases are associated with reduced cancer risk. These results point to the involvement of immune and/or inflammatory factors that may either foster or restrain pancreas carcinogenesis warranting further research to understand the molecular mechanisms driving this association.