111 resultados para Electromyographic fatigue threshold
Resumo:
In this paper, we introduce a method to detect pathological pathways of a disease. We aim to identify biological processes rather than single genes affected by the chronic fatigue syndrome (CFS). So far, CFS has neither diagnostic clinical signals nor abnormalities that could be diagnosed by laboratory examinations. It is also unclear if the CFS represents one disease or can be subdivided in different categories. We use information from clinical trials, the gene ontology (GO) database as well as gene expression data to identify undirected dependency graphs (UDGs) representing biological processes according to the GO database. The structural comparison of UDGs of sick versus non-sick patients allows us to make predictions about the modification of pathways due to pathogenesis.
Resumo:
Agonistic interactions between animals are often settled by the use of repeated signals which advertise the resource-holding potential of the sender. According to the sequential assessment game this repetition increases the accuracy with which receivers may assess the signal, but under the cumulative assessment model the repeated performances accumulate to give a signal of stamina. These models may be distinguished by the temporal pattern of signalling they predict and by the decision rules used by the contestants. Hermit crabs engage in shell fights over possession of the gastropod shells that they inhabit. During these interactions the two roles of signaller and receiver may be examined separately because they are fixed for the duration of the encounter. Attackers rap their shell against that of the defender in a series of bouts whereas defenders remain tightly withdrawn into their shells for the duration of the contest. At the end of a fight the attacker may evict the defender from its shell or decide to give up without first effecting an eviction; the decision for defenders is either to maintain a grip on its shell or to release the shell and allow itself to be evicted. We manipulated fatigue levels separately for attackers and defenders, by varying the oxygen concentration of the water that they are held in prior to fighting, and examined the effects that this has on the likelihood of each decision and on the temporal pattern of rapping. We show that the vigour of rapping and the likelihood of eviction are reduced when the attacker is subjected to low oxygen but that this treatment has no effect on rates of eviction when applied to defenders. We conclude that defenders compare the vigour of rapping with an absolute threshold rather than with a relative threshold when making their decision. The data are compatible with the cumulative assessment model and with the idea that shell rapping signals the stamina of attackers, but do not fit the predictions of the sequential assessment game.
Resumo:
To increase structural efficiency of stiffened panels in an aircraft, it is plausible to introduce skin buckling containment features to increase the local skin stability and thus static strength performance. Introducing buckling containment features may also significantly influence the fatigue crack growth performance of the stiffened panel. This study focuses on the experimental demonstration of panel durability with skin bay buckling containment features. Through a series of fatigue crack growth tests on integrally machined aluminium alloy stiffened panels, the potential to simultaneously improve static strength performance and crack propagation behaviour is demonstrated. The introduction of prismatic buckling containment features which have yielded significant static strength performance gains have herein demonstrated potential fatigue life gains of up to + 63 per cent.
Resumo:
In a recent paper [Phys. Rev. Lett. 88, 163202 (2002)] we established the threshold behavior of the cross section of positron-atom annihilation into two gamma quanta near the positronium (Ps)-formation threshold. Here, the near-threshold behavior of the positron 3 gamma annihilation cross section and its relation to the ortho-Ps-formation cross section are determined. We also analyze the feasibility of observing these effects by examining the effect of the ?nite-energy resolution of a positron beam on the threshold behavior.
Resumo:
We report calculations of double ionization energy spectra and momentum distributions of laser-driven helium due to few-cycle pulses of wavelength 195 nm. The results are obtained from full-dimensional numerical integration of the two electron time-dependent Schr¨odinger equation. A momentum-space analysis of doubly ionizing wavepackets shows that the concentric-ring structure of above-threshold double ionization, together with the associated structure of peaks in the total kinetic energy spectrum, may be attributed to wavepacket interference effects, where at least two doubly-ionizing wavepackets from different recollision events populate the same spatial hemisphere.
Resumo:
AIMS/HYPOTHESIS: Atherosclerosis, which occurs prematurely in individuals with diabetes, incorporates vascular smooth muscle cell (VSMC) chemotaxis. Glucose, through protein kinase C-beta(II) signalling, increases chemotaxis to low concentrations of platelet-derived growth factor (PDGF)-BB. In VSMC, a biphasic response in PDGF-beta receptor (PDGF-betaR) level occurs as PDGF-BB concentrations increase. The purpose of this study was to determine whether increased concentrations of PDGF-BB and raised glucose level had a modulatory effect on the mitogen-activated protein kinase/extracellular-regulated protein kinase pathway, control of PDGF-betaR level and chemotaxis.
METHODS: Cultured aortic VSMC, exposed to normal glucose (NG) (5 mmol/l) or high glucose (HG) (25 mmol/l) in the presence of PDGF-BB, were assessed for migration (chemotaxis chamber) or else extracted and immunoblotted.
RESULTS: At concentrations of PDGF-BB <540 pmol/l, HG caused an increase in the level of PDGF-betaR in VSMC (immunoblotting) versus NG, an effect that was abrogated by inhibition of aldose reductase or protein kinase C-beta(II). At higher concentrations of PDGF-BB (>540 pmol/l) in HG, receptor level was reduced but in the presence of aldose reductase or protein kinase C-beta(II) inhibitors the receptor levels increased. It is known that phosphatases may be activated at high concentrations of growth factors. At high concentrations of PDGF-BB, the protein phosphatase (PP)2A inhibitor, endothall, caused an increase in PDGF-betaR levels and a loss of biphasicity in receptor levels in HG. At higher concentrations of PDGF-BB in HG, the chemoattractant effect of PDGF-BB was lost (chemotaxis chamber). Under these conditions inhibition of PP2A was associated with a restoration of chemotaxis to high concentrations of PDGF-BB.
CONCLUSION/INTERPRETATION: The biphasic response in PDGF-betaR level and in chemotaxis to PDGF-BB in HG is due to PP2A activation.
Resumo:
As architects and designers we have a responsibility to provide an inclusive built environment. For the Autistic Spectrum Disorder (ASD) sufferer however, the built environment can be a frightening and confusing place, difficult to negotiate and tolerate. The challenge of integrating more fully into society is denied by an alienating built environment. This barrier can be magnified for ASD pupils in a poorly designed school, where their environment can further distance them from learning. Instead, if more at ease in their surroundings, in an ASD friendly environment, the ASD pupil stands a greater chance of doing better.
Whilst researchers have looked at the classroomenvironment, the transition of classroom to corridor andbeyond has so far been largely ignored. However, theneed for a well-considered threshold between class andcorridor needs to be considered. In this regard, threshold is much more than a doorway, but instead an event that demands a carefully considered place. The following paper firstly outlines why threshold as place andevent for the ASD pupil should be given consideration. It then goes onto highlight, through case studies in anIrish context, the opportunities for aiding the ASD pupil integrating in a mainstream school environment throughsensitive use of threshold. Finally it highlights inconclusion, some of the benefits for an enriched school environment for all pupils, if considering threshold as design generator.The objective is straightforward. By increasing awareness of the relationship between the ASD child and the built environment it will hopefully facilitate greater inclusion of the ASD pupil into mainstream education and society at large.
Resumo:
One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The majority of cemented femoral hip replacements fail as a consequence of loosening. One design feature that may affect loosening rates is implant surface finish. To determine whether or not surface finish effects fatigue damage accumulation in a bone cement mantle, we developed an experimental model of the implanted proximal femur that allows visualisation of damage growth in the cement layer. Five matt surface and five polished surface stems were tested. Pre-load damage and damage after two million cycles was measured. Levels of pre-load (shrinkage) damage were the same for both matt and polished stems; furthermore damage for matt vs. polished stems was not significantly different after two million cycles. This was due to the large variability in damage accumulation rates. Finite element analysis showed that the stress is higher for the polished (assumed debonded) stem, and therefore we must conclude that either the magnitude of the stress increase is not enough to appreciably increase the damage accumulation rate or, alternatively, the polished stem does not debond immediately from the cement. Significantly (P = 0.05) more damage was initiated in the lateral cement compared to the medial cement for both kinds of surface finish. It was concluded that, despite the higher cement stresses with debonded stems, polished prostheses do not provoke the damage accumulation failure scenario. (C) 2003 IPEM. Published by Elsevier Ltd. All rights reserved.