46 resultados para Electromagnetic wave emission


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrodinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear coupling between two magnetic-field-aligned electromagnetic electron-cyclotron (EMEC) waves in plasmas is considered. Evaluating the ponderomotive coupling between the EMEC waves and quasistationary plasma density perturbations, a pair of coupled nonlinear Schrodinger equations (CNLSEs) is obtained. The CNLSEs are then used to investigate the occurrence of modulational instability in magnetized plasmas. Waves in the vicinity of the zero-group-dispersion point are considered, so that the group dispersion terms may either bear the same or different signs. It is found that a stable EMEC wave can be destabilized due to its nonlinear interactions with an unstable one, while a pair of unstable EMEC waves yields an increased instability growth rate. Individually stable waves remain stable while interacting with one another. Stationary nonlinear solutions of the coupled equations are presented. The relevance of our investigation to nonlinear phenomena in space plasmas is discussed. (c) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parametric coupling between large amplitude magnetic field-aligned circularly polarized electromagnetic ion-cyclotron (EMIC) waves and ponderomotively driven ion-acoustic perturbations in magnetized space plasmas is considered. A cubic nonlinear Schrodinger equation for the modulated EMIC wave envelope is derived, and then solved analytically. The modulated EMIC waves are found to be stable (unstable) against ion-acoustic density perturbations, in the subsonic (supersonic, respectively) case, and they may propagate as "supersonic bright" ("subsonic dark", i.e. "black" or "grey") type envelope solitons, i.e. electric field pulses (holes, voids), associated with (co-propagating) density humps. Explicit bright and dark (black/grey) envelope excitation profiles are presented, and the relevance of our investigation to space plasmas is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of frequency steerable two-dimensional electromagnetic focusing by using a tapered leaky-wave line source embedded in a parallel-plate medium is presented. Accurate expressions for analyzing the focusing pattern of a rectilinear leaky-wave lens (LWL) from its constituent leaky-mode tapered propagation constant are described. The influence of the main LWL structural parameters on the synthesis of the focusing pattern is discussed. The ability to generate frequency steerable focusing patterns has been demonstrated by means of an example involving a LWL in hybrid waveguide printed-circuit technology and the results are validated by a commercial full-wave solver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report what is to our knowledge the first demonstration of a transient x-ray laser pumped by a 350-fs pulse in a traveling-wave irradiation geometry. For a 500-fs pump pulse the traveling-wave irradiation was found to have a strong effect on enhancing the Ni-like silver 4d-4p lasing emission at 13.9 nm. The signal enhancement was significantly less when the pulse duration was lengthened to 1.7 ps. The experimental observations are well reproduced by a simple model when the duration of gain is taken of the order of 15-20 ps. For the 500-fs pulse a gain coefficient of 14.5 cm(-1) was measured for plasma lengths up to 7 mm. Refraction of the amplified photons is believed to be the main cause of the limitation of the effective amplification length. (C) 2000 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A similar to 3 ps travelling wave chirped pulse amplified pulse at 6 x 10(14) W cm(-2) superimposed on similar to 300 ps background pulses is shown to be an efficient method to pump transient collisional excitation X-ray lasers in both Ni-like and Ne-like ions. Measurements of X-ray laser output as a function of plasma length are fitted with results of an amplified spontaneous emission model of the laser output taking account of travelling wave pumping effects. A small signal gain coefficient similar to 42 cm(-1) and a effective gain length product of similar to 18 are measured for the Ni-like Sn laser at 120 Angstrom. Simulations from a hydrodynamic and atomic physics code (EHYBRID) coupled to a ray trace code show that a spatially averaged small signal gain similar to 65 cm(-1) can be obtained in Ne-like Ge provided the optimum pumping pulse arrangement is used. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absolute doubly differential cross sections have been measured as a function of electron energy and angle of observation for electron emission in collisions of 3.5-MeV/u Fe17+ and Fe22+ ions with He and Ar gas targets under single-collision conditions. The measured electron emission cross sections are compared to theoretical and scaled cross sections based on the Born approximation. The results using intermediate-mass ions are discussed with reference to previously reported cross sections from collisions with highly charged lighter- and heavier-ion species at MeV/u projectile energies. The continuum-distorted-wave-eikonal-initial-state approximation shows good agreement with experiments except in the

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period∼290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent band passes were found to be out of phase with one another, displaying phase angles of 6.°12, 5.°82,and 15.°97 between the 4170 Å continuum–G-band,G-band–Na i D1, and Na i D1–Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ∼0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 Wm‑2. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microscopic dynamics of laser-driven coherent synchrotron emission transmitted through thin foils are investigated using particle-in-cell simulations. For normal incidence interactions, we identify the formation of two distinct electron nanobunches from which emission takes place each half-cycle of the driving laser pulse. These emissions are separated temporally by 130 attoseconds and are dominant in different frequency ranges, which is a direct consequence of the distinct characteristics of each electron nanobunch. This may be exploited through spectral filtering to isolate these emissions, generating electromagnetic pulses of duration ~70 as.