37 resultados para Electricity Network Distribution Wastes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter focuses on the relationship between improvisation and indeterminacy. We discuss the two practices by referring to play theory and game studies and situate it in recent network music performance. We will develop a parallel with game theory in which indeterminacy is seen as a way of articulating situations where structural decisions are left to the discernment of the performers and discuss improvisation as a method of play. The improvisation-indeterminacy relationship is discussed in the context of network music performance, which employs digital networks in the exchange of data between performers and hence relies on topological structures with varying degrees of openness and flexibility. Artists such as Max Neuhaus and The League of Automatic Music Composers initiated the development of a multitude of practices and technologies exploring the network as an environment for music making. Even though the technologies behind “the network” have shifted dramatically since Neuhaus’ use of radio in the 1960’s, a preoccupation with distribution and sharing of artistic agency has remained at the centre of networked practices. Gollo Föllmer, after undertaking an extensive review of network music initiatives, produced a typology that comprises categories as diverse as remix lists, sound toys, real/virtual space installations and network performances. For Föllmer, “the term ‘Net music’ comprises all formal and stylistic kinds of music upon which the specifics of electronic networks leave considerable traces, whereby the electronic networks strongly influence the process of musical production, the musical aesthetic, or the way music is received” (2005: 185).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, an ever-increasing number of devices has networking capability. The main implication of this fact is that such devices are often left fully powered yet idle just to maintain their network presence, hence leading to large energy waste. This ultimately results in higher electricity cost for consumers. This paper tackles an effective mechanism to reduce energy waste of consumer electronics, by boosting the usage of lowpower states available in most devices. The main concept is to delegate background networking routines to home gateways, which are today available in most homes and offices. The paper describes the functionality and the software architecture to be implemented by home gateways and consumer electronics, reports performance evaluation on a working prototype, and provides estimation of potential benefits for consumers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future power systems are expected to integrate large-scale stochastic and intermittent generation and load due to reduced use of fossil fuel resources, including renewable energy sources (RES) and electric vehicles (EV). Inclusion of such resources poses challenges for the dynamic stability of synchronous transmission and distribution networks, not least in terms of generation where system inertia may not be wholly governed by large-scale generation but displaced by small-scale and localised generation. Energy storage systems (ESS) can limit the impact of dispersed and distributed generation by offering supporting reserve while accommodating large-scale EV connection; the latter (load) also participating in storage provision. In this paper, a local energy storage system (LESS) is proposed. The structure, requirement and optimal sizing of the LESS are discussed. Three operating modes are detailed, including: 1) storage pack management; 2) normal operation; and 3) contingency operation. The proposed LESS scheme is evaluated using simulation studies based on data obtained from the Northern Ireland regional and residential network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A network connected host is expected to generate/respond to applications and protocols specific messages. Billions of Euro of electricity is wasted to keep idle hosts powered up 24/7 just to maintain network presence. This short paper describes the design of our cooperative Network Connectivity Proxy (NCP) that can impersonate sleeping hosts and responds to packets on their behalf as they were connected and fully operational. Thus, NCP is in fact an efficient approach to reduce network energy waste.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As one of the most successfully commercialized distributed energy resources, the long-term effects of microturbines (MTs) on the distribution network has not been fully investigated due to the complex thermo-fluid-mechanical energy conversion processes. This is further complicated by the fact that the parameter and internal data of MTs are not always available to the electric utility, due to different ownerships and confidentiality concerns. To address this issue, a general modeling approach for MTs is proposed in this paper, which allows for the long-term simulation of the distribution network with multiple MTs. First, the feasibility of deriving a simplified MT model for long-term dynamic analysis of the distribution network is discussed, based on the physical understanding of dynamic processes that occurred within MTs. Then a three-stage identification method is developed in order to obtain a piecewise MT model and predict electro-mechanical system behaviors with saturation. Next, assisted with the electric power flow calculation tool, a fast simulation methodology is proposed to evaluate the long-term impact of multiple MTs on the distribution network. Finally, the model is verified by using Capstone C30 microturbine experiments, and further applied to the dynamic simulation of a modified IEEE 37-node test feeder with promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.