39 resultados para Effective quantum yield
Resumo:
We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. In a classical system the temperature behaves as an intensive magnitude, above a certain block size, regardless of the actual value of the temperature itself. However, a deviation from this behavior is expected in quantum systems. In particular, we see that under some conditions the description of the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical behavior. As it may be expected, we see that quantum features are more prominent at low temperatures and are affected by the presence of zero-temperature quantum phase transitions. Interestingly, we show that the blocks can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is properly identified. Such a result may originate from typical properties of reduced subsystems of energy-constrained Hilbert spaces. Finally, the relation between local and global temperatures is analyzed as a function of the size of the blocks and the system parameters.
Resumo:
We consider the concept of temperature in a setting beyond the standard thermodynamics prescriptions. Namely, rather than restricting to standard coarse-grained measurements, we consider observers able to master any possible quantum measurement -a scenario that might be relevant at nanoscopic scales. In this setting, we focus on quantum systems of coupled harmonic oscillators and study the question of whether the temperature is an intensive quantity, in the sense that a block of a thermal state can be approximated by an effective thermal state at the same temperature as the whole system. Using the quantum fidelity as figure of merit, we identify instances in which this approximation is not valid, as the block state and the reference thermal state are distinguishable for refined measurements. Actually, there are situations in which this distinguishability even increases with the block size. However, we also show that the two states do become less distinguishable with the block size for coarse-grained measurements -thus recovering the standard picture. We then go further and construct an effective thermal state which provides a good approximation of the block state for any observables and sizes. Finally, we point out the role that entanglement plays in this scenario by showing that, in general, the thermodynamic paradigm of local intensive temperature applies whenever entanglement is not present in the system. Copyright (C) EPLA, 2012
Resumo:
We introduce a general scheme for sequential one-way quantum computation where static systems with long-living quantum coherence (memories) interact with moving systems that may possess very short coherence times. Both the generation of the cluster state needed for the computation and its consumption by measurements are carried out simultaneously. As a consequence, effective clusters of one spatial dimension fewer than in the standard approach are sufficient for computation. In particular, universal computation requires only a one-dimensional array of memories. The scheme applies to discrete-variable systems of any dimension as well as to continuous-variable ones, and both are treated equivalently under the light of local complementation of graphs. In this way our formalism introduces a general framework that encompasses and generalizes in a unified manner some previous system-dependent proposals. The procedure is intrinsically well suited for implementations with atom-photon interfaces.
Resumo:
We present an implementation of quantum annealing (QA) via lattice Green's function Monte Carlo (GFMC), focusing on its application to the Ising spin glass in transverse field. In particular, we study whether or not such a method is more effective than the path-integral Monte Carlo- (PIMC) based QA, as well as classical simulated annealing (CA), previously tested on the same optimization problem. We identify the issue of importance sampling, i.e., the necessity of possessing reasonably good (variational) trial wave functions, as the key point of the algorithm. We performed GFMC-QA runs using such a Boltzmann-type trial wave function, finding results for the residual energies that are qualitatively similar to those of CA (but at a much larger computational cost), and definitely worse than PIMC-QA. We conclude that, at present, without a serious effort in constructing reliable importance sampling variational wave functions for a quantum glass, GFMC-QA is not a true competitor of PIMC-QA.
Resumo:
Quantum annealing is a promising tool for solving optimization problems, similar in some ways to the traditional ( classical) simulated annealing of Kirkpatrick et al. Simulated annealing takes advantage of thermal fluctuations in order to explore the optimization landscape of the problem at hand, whereas quantum annealing employs quantum fluctuations. Intriguingly, quantum annealing has been proved to be more effective than its classical counterpart in many applications. We illustrate the theory and the practical implementation of both classical and quantum annealing - highlighting the crucial differences between these two methods - by means of results recently obtained in experiments, in simple toy-models, and more challenging combinatorial optimization problems ( namely, Random Ising model and Travelling Salesman Problem). The techniques used to implement quantum and classical annealing are either deterministic evolutions, for the simplest models, or Monte Carlo approaches, for harder optimization tasks. We discuss the pro and cons of these approaches and their possible connections to the landscape of the problem addressed.
Resumo:
We propose a scheme for the detection of quantum phase transitions in the one-dimensional (1D) Bose-Hubbard (BH) and 1D Extended Bose-Hubbard (EBH) models, using the nondemolition measurement technique of quantum polarization spectroscopy. We use collective measurements of the effective total angular momentum of a particular spatial mode to characterize the Mott insulator to superfluid phase transition in the BH model and the transition to a density wave state in the EBH model. We extend the application of collective measurements to the ground states at various deformations of a superlattice potential.
Resumo:
We demonstrate the ability to control the molecular dissociation rate using femtosecond pulses shaped with third-order dispersion (TOD). Explicitly, a significant 50% enhancement in the dissociation yield for the low lying vibrational levels (v ∼ 6) of an H+2 ion-beam target was measured as a function of TOD. The underlying mechanism responsible for this enhanced dissociation was theoretically identified as non-adiabatic alignment induced by the pre-pulses situated on the leading edge of pulses shaped with negative TOD. This control scheme is expected to work in other molecules as it does not rely on specific characteristics of our test-case H+2 molecule.
Resumo:
The strong mixing of many-electron basis states in excited atoms and ions with open f shells results in very large numbers of complex, chaotic eigenstates that cannot be computed to any degree of accuracy. Describing the processes which involve such states requires the use of a statistical theory. Electron capture into these “compound resonances” leads to electron-ion recombination rates that are orders of magnitude greater than those of direct, radiative recombination and cannot be described by standard theories of dielectronic recombination. Previous statistical theories considered this as a two-electron capture process which populates a pair of single-particle orbitals, followed by “spreading” of the two-electron states into chaotically mixed eigenstates. This method is similar to a configuration-average approach because it neglects potentially important effects of spectator electrons and conservation of total angular momentum. In this work we develop a statistical theory which considers electron capture into “doorway” states with definite angular momentum obtained by the configuration interaction method. We apply this approach to electron recombination with W20+, considering 2×106 doorway states. Despite strong effects from the spectator electrons, we find that the results of the earlier theories largely hold. Finally, we extract the fluorescence yield (the probability of photoemission and hence recombination) by comparison with experiment.
Resumo:
We introduce a hybrid method for dielectric-metal composites that describes the dynamics of the metallic system classically whilst retaining a quantum description of the dielectric. The time-dependent dipole moment of the classical system is mimicked by the introduction of projected equations of motion (PEOM) and the coupling between the two systems is achieved through an effective dipole-dipole interaction. To benchmark this method, we model a test system (semiconducting quantum dot-metal nanoparticle hybrid). We begin by examining the energy absorption rate, showing agreement between the PEOM method and the analytical rotating wave approximation (RWA) solution. We then investigate population inversion and show that the PEOM method provides an accurate model for the interaction under ultrashort pulse excitation where the traditional RWA breaks down.