37 resultados para Echinacea (Plants) Therapeutic use


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the most important viral cause of severe respiratory disease in infants and increasing recognition as important in the elderly and immunocompromised, respiratory syncytial virus (RSV) is responsible for a massive health burden worldwide. Prophylactic antibodies were successfully developed against RSV. However, their use is restricted to a small group of infants considered at high risk of severe RSV disease. There is still no specific therapeutics or vaccines to combat RSV. As such, it remains a major unmet medical need for most individuals. The World Health Organisations International Clinical Trials Registry Platform (WHO ICTRP) and PubMed were used to identify and review all RSV vaccine, prophylactic and therapeutic candidates currently in clinical trials. This review presents an expert commentary on all RSV-specific prophylactic and therapeutic candidates that have entered clinical trials since 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of TiO 2 photocatalysis for the destruction of dyes such as methylene blue has been extensively reported. One of the challenges faced in both the laboratory and large scale water treatment plants is the fact that the samples have to be removed from the reactor vessel and the catalyst separated prior to analysis being undertaken. In this paper we report the development of a simple fluorimeter instrument and its use in monitoring the photocatalytic destruction of methylene blue dyes in the presence of catalyst suspensions. The results reported show that the instrument provides an effective method for in situ monitoring of the photocatalytic destruction of fluorescent dyes hence allowing more accurate measurement due to the minimisation of sample loss and cross contamination. Furthermore it also provides a method for real time monitoring of the dye pollutant destruction in large scale photocatalytic reactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic infection with Pseudomonas aeruginosa is associated with poor outcomes in patients with cystic fibrosis (CF). It leads to a reduced quality of life, acceleration of the decline in lung function, and increased frequency and severity of pulmonary exacerbations. Tobramycin, administered by inhalation as a long-term therapy, decreases bacterial density in airways, reduces exacerbation frequency, and improves quality of life and lung function in patients with chronic P. aeruginosa infection. In the last decade, tobramycin inhalation has become an important contributor to CF treatment as a means to control chronic infection and as a first-line treatment for the eradication of early acquisition of P. aeruginosa. Recently, a dry powder inhalation (DPI) form of tobramycin has become available, which is more convenient for administration and has comparable efficacy to the tobramycin solution. This DPI, the Podhaler™ (Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA), requires less time for treatment delivery and is more portable than a nebulizer, and so is a welcome additional therapeutic option for many patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infectious diseases are a leading cause of global human mortality. The use of antimicrobials remains the most common strategy for treatment. However, the isolation of pathogens resistant to virtually all antimicrobials makes it urgent to develop effective therapeutics based on new targets. Here we review a new drug discovery paradigm focusing on identifying and targeting host factors important for infection as well as pathogen determinants involved in disease progression. We summarize innovative strategies which by combining bioinformatics with transcriptomics and chemical genetics have already identified host factors essential for pathogen entry, survival and replication. We describe how the discovery of RNA interference which allows loss-of-function studies has facilitated functional genomic studies in human cells. It is expected that these studies will identify targets to be used as host-directed drug therapy which, together with antimicrobials targeting microbial virulence factors, will efficiently eliminate the invading pathogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of formulations and drug delivery strategies for paediatric use is challenging, partially due to the age ranges within this population, resulting in varying requirements to achieve optimised patient outcomes. Although the oral route of drug delivery remains the preferred option, there are problematic issues, such as difficulty swallowing and palatability of medicines specific to this population. The parenteral route is not well accepted by children due to needle-related fear and pain. Accordingly, a plethora of alternative routes of drug administration have been investigated. Microneedles (MN) breach the stratum corneum (SC), the outermost layer of skin, increasing the number of drug substances amenable to transdermal delivery. This strategy involves the use of micron-sized needles to painlessly, and without drawing blood, create transient aqueous conduits in the SC. In this study, polymeric dissolving MN and hydrogel-forming MN were fabricated incorporating two model drugs commonly used in paediatric patients (caffeine and lidocaine hydrochloride). The potential efficacy of these MN for paediatric dosing was investigated via in vitro and in vivo studies. Views pertaining to MN technology were sought amongst school children in Northern Ireland, members of the UK general public and UK-based paediatricians, to determine perceived benefits, acceptance, barriers and concerns for adoption of this technology. In this study, polymeric MN were shown to substantially enhance skin permeability of the model therapeutic molecules in vitro and in vivo. In particular, hydrogel-forming MN led to a 6.1-fold increase in caffeine delivery whilst lidocaine HCl delivery was increased by 3.3-fold using dissolving MN in vitro. Application of caffeine-loaded MN led to a caffeine plasma concentration of 23.87μg/mL in rats at 24h. This research also highlighted a strong consensus regarding MN technology amongst schoolchildren, paediatricians and the general public, regarding potential use of MN in the paediatric population. Overall, 93.6% of general public respondents and 85.9% of paediatricians regarded the use of MN as a positive approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photodynamic therapy involves delivery of a photosensitising drug that is activated by light of a specific wavelength, resulting in generation of highly reactive radicals. This activated species can cause destruction of targeted cells. Application of this process for treatment of microbial infections has been termed "photodynamic antimicrobial chemotherapy" (PACT). In the treatment of chronic wounds, the delivery of photosensitising agents is often impeded by the presence of a thick hyperkeratotic/necrotic tissue layer, reducing their therapeutic efficacy. Microneedles (MNs) are an emerging drug delivery technology that have been demonstrated to successfully penetrate the outer layers of the skin, whilst minimising damage to skin barrier function. Delivering photosensitising drugs using this platform has been demonstrated to have several advantages over conventional photodynamic therapy, such as, painless application, reduced erythema, enhanced cosmetic results and improved intradermal delivery. The aim of this study was to physically characterise dissolving MNs loaded with the photosensitising agent, methylene blue and assess their photodynamic antimicrobial activity. Dissolving MNs were fabricated from aqueous blends of Gantrez(®) AN-139 co-polymer containing varying loadings of methylene blue. A height reduction of 29.8% was observed for MNs prepared from blends containing 0.5% w/w methylene blue following application of a total force of 70.56 N/array. A previously validated insertion test was used to assess the effect of drug loading on MN insertion into a wound model. Staphylococcus aureus, Escherichia coli and Candida albicans biofilms were incubated with various methylene blue concentrations within the range delivered by MNs in vitro (0.1-2.5 mg/mL) and either irradiated at 635 nm using a Paterson Lamp or subjected to a dark period. Microbial susceptibility to PACT was determined by assessing the total viable count. Kill rates of >96%, were achieved for S. aureus and >99% for E. coli and C. albicans with the combination of PACT and methylene blue concentrations between 0.1 and 2.5 mg/mL. A reduction in the colony count was also observed when incorporating the photosensitiser without irradiation, this reduction was more notable in S. aureus and E. coli strains than in C. albicans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe, for the first time, hydrogel-forming microneedle (MN) arrays for minimally-invasive extraction and quantification of lithium in vitro and in vivo. MN arrays, prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) and crosslinked by poly(ethyleneglycol), imbibed interstitial fluid (ISF) upon skin insertion. Such MN were always removed intact. In vitro, mean detected lithium concentrations showed no significant difference following 30 min MN application to excised neonatal porcine skin for lithium citrate concentrations of 0.9 and 2 mmol/l. However, after 1 h application, the mean lithium concentrations extracted were significantly different, being appropriately concentration-dependent. In vivo, rats were orally dosed with lithium citrate equivalent to 15 mg/kg and 30 mg/kg lithium carbonate, respectively. MN arrays were applied 1 h after dosing and removed 1 h later. The two groups, having received different doses, showed no significant difference between lithium concentrations in serum or MN. However, the higher dosed rats demonstrated a lithium concentration extracted from MN arrays equivalent to a mean increase of 22.5 % compared to rats which received the lower dose. Hydrogel-forming MN clearly have potential as a minimally-invasive tool for lithium monitoring in out-patient settings. We will now focus on correlation of serum and MN lithium concentrations.