163 resultados para Eastern Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pollen-based study from Tiny Lake in the Seymour-Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740?±?70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860?±?50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour-Belize Inlet Complex, on a meso- to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour-Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi-permanent air mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological activities greatly influence the formation of many soils, especially forest soils under cool humid climates. The objective of this study was to investigate the effects of vegetation and soil biota on the formation of selected soils. Field morphology, micromorphology, and carbon and organic matter analysis were determined on six Podzols (Spodosols) and two Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Humification of plant material by soil fauna and fungi occurs in all organic horizons. Thick organic coatings are observed on soil peds and rock fragments from the E1 to the Bs horizon in a Haplic Podzol from Clingmans Dome Mt., TN. Thin sections reveal large accumulations of root material in different stages of decomposition in the spodic horizons of a Haplic Podzol from Whiteface Mt., NY. Organic carbon ranges from 5.4 to 8.5% in the spodic B horizons of the Whiteface Mt. Podzol. Earthworms and enchytraeids have a great effect on the structure of the surface and subsurface horizons in the Dystric Cambisols from Huntly and Clashindarroch Forests, Scotland and a Cambic Podzol from the Corrie Burn Basin, Scotland. Podzols from Speymouth Forest, Scotland (Gleyic Podzol), Cling-mans Dome Mt., and Whiteface Mt. have thick organic horizons. The Podzols from the Flatwoods in Georgia, the Pine Barrens in New Jersey, the Corrie Burn Basin, and the Cambisol from Huntly Forest have only A horizons at the surface. The Clashindarroch Forest soil has a very thin organic horizon. Warm and humid climates and sandy parent material are responsible for thick E horizons and lack of thick organic horizons in the Flatwoods (Carbic Podzol) and Pine Barrens (Ferric Podzol) soils. Earthworms and enchytraeids thrive in the Corrie Burn Basin and Huntly Forest soils due to the vegetation and the highly weathered basic parent material. The site at Clashindarroch once carried oak, and then birch forest, both of which produce a mild litter and also encourage earthworm and enchytraeids. This fauna is responsible for much mixing of the topsoil. The present conifer vegetation will eventually produce a deep litter and cause podzolization.