42 resultados para ERGODIC DIVERTOR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current design plans for the International Thermonuclear\nExperimental Reactor ( ITER) call for tungsten to be employed for\ncertain plasma facing components in the divertor region. Thus, accurate\natomic collision data are needed for emission modelling of tungsten.\nElectron-impact excitation and radiative rates are of particular\nimportance for Ni-like W, since this ion emits some of the most intense\nspectral lines of all ionization stages. We report on a fully\nrelativistic 115-level R-matrix calculations of W46+, which includes the\neffects of radiation damping. Although radiation damping is very\nimportant in most highly ionized species, its effects are reduced in\nthis case because of the closed-shell Ni-like ground state. The rates\nfrom these relativistic atomic calculations will be employed for\ncollisional-radiative modelling of this ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New scaled carbon atomic electron-impact excitation data is utilized to evaluate comparisons between experimental measurements and fluid emission modeling of detached plasmas at DIII-D. The C I and C II modeled emission lines for 909.8 and 514.7 nm were overestimated by a factor of 10-20 than observed experimentally for the inner leg, while the outer leg was within a factor of 2. Due to higher modeled emissions, a previous study using the UEDGE code predicted that a higher amount of carbon was required to achieve a detached outboard divertor plasma in L-mode at DIII-D. The line emission predicted by using the new scaled carbon data yields closer results when compared against experiment. We also compare modeling and measurements of Dα emission from neutral deuterium against predictions from newly calculated R-Matrix with pseudostates data available at the ADAS database. © 2013 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trends and focii of interest in atomic modelling and data are identified in connection with recent observations and experiments in fusion and astrophysics. In the fusion domain, spectral observations are included of core, beam penetrated and divertor plasma. The helium beam experiments at JET and the studies with very heavy species at ASDEX and JET are noted. In the astrophysics domain, illustrations are given from the SOHO and CHANDRA spacecraft which span from the solar upper atmosphere, through soft x-rays from comets to supernovae remnants. It is shown that non-Maxwellian, dynamic and possibly optically thick regimes must be considered. The generalized collisional-radiative model properly describes the collisional regime of most astrophysical and laboratory fusion plasmas and yields self-consistent derived data for spectral emission, power balance and ionization state studies. The tuning of this method to routine analysis of the spectral observations is described. A forward look is taken as to how such atomic modelling, and the atomic data which underpin it, ought to evolve to deal with the extended conditions and novel environments of the illustrations. It is noted that atomic physics influences most aspects of fusion and astrophysical plasma behaviour but the effectiveness of analysis depends on the quality of the bi-directional pathway from fundamental data production through atomic/plasma model development to the confrontation with experiment. The principal atomic data capability at JET, and other fusion and astrophysical laboratories, is supplied via the Atomic Data and Analysis Structure (ADAS) Project. The close ties between the various experiments and ADAS have helped in this path of communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider the uplink of a single-cell multi-user single-input multiple-output (MU-SIMO) system with in-phase and quadrature-phase imbalance (IQI). Particularly, we investigate the effect of receive (RX) IQI on the performance of MU-SIMO systems with large antenna arrays employing maximum-ratio combining (MRC) receivers. In order to study how IQI affects channel estimation, we derive a new channel estimator for the IQI-impaired model and show that the higher the value of signal-to-noise ratio (SNR) the higher the impact of IQI on the spectral efficiency (SE). Moreover, a novel pilot-based joint estimator of the augmented MIMO channel matrix and IQI coefficients is described and then, a low-complexity IQI compensation scheme is proposed which is based on the
IQI coefficients’ estimation and it is independent of the channel gain. The performance of the proposed compensation scheme is analytically evaluated by deriving a tractable approximation of the ergodic SE assuming transmission over Rayleigh fading channels with large-scale fading. Furthermore, we investigate how many MSs should be scheduled in massive multiple-input multiple-output (MIMO) systems with IQI and show that the highest SE loss occurs at the optimal operating point. Finally,
by deriving asymptotic power scaling laws, and proving that the SE loss due to IQI is asymptotically independent of the number of BS antennas, we show that massive MIMO is resilient to the effect of RX IQI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the authors propose simple methods to evaluate the achievable rates and outage probability of a cognitive radio (CR) link that takes into account the imperfectness of spectrum sensing. In the considered system, the CR transmitter and receiver correlatively sense and dynamically exploit the spectrum pool via dynamic frequency hopping. Under imperfect spectrum sensing, false-alarm and miss-detection occur which cause impulsive interference emerged from collisions due to the simultaneous spectrum access of primary and cognitive users. That makes it very challenging to evaluate the achievable rates. By first examining the static link where the channel is assumed to be constant over time, they show that the achievable rate using a Gaussian input can be calculated accurately through a simple series representation. In the second part of this study, they extend the calculation of the achievable rate to wireless fading environments. To take into account the effect of fading, they introduce a piece-wise linear curve fitting-based method to approximate the instantaneous achievable rate curve as a combination of linear segments. It is then demonstrated that the ergodic achievable rate in fast fading and the outage probability in slow fading can be calculated to achieve any given accuracy level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a cooperative relaying network in which a source communicates with a group of users in the presence of one eavesdropper. We assume that there are no source-user links and the group of users receive only retransmitted signal from the relay. Whereas, the eavesdropper receives both the original and retransmitted signals. Under these assumptions, we exploit the user selection technique to enhance the secure performance. We first find the optimal power allocation strategy when the source has the full channel state information (CSI) of all links. We then evaluate the security level through: i) ergodic secrecy rate and ii) secrecy outage probability when having only the statistical knowledge of CSIs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an analytical performance investigation of both beamforming (BF) and interference cancellation (IC) strategies for a device-to-device (D2D) communication system underlaying a cellular network with an M-antenna base station (BS). We first derive new closed-form expressions for the ergodic achievable rate for BF and IC precoding strategies with quantized channel state information (CSI), as well as, perfect CSI. Then, novel lower and upper bounds are derived which apply for an arbitrary number of antennas and are shown to be sufficiently tight to the Monte-Carlo results. Based on these results, we examine in detail three important special cases including: high signal-to-noise ratio (SNR), weak interference between cellular link and D2D link, and BS equipped with a large number of antennas. We also derive asymptotic expressions for the ergodic achievable rate for these scenarios. Based on these results, we obtain valuable insights into the impact of the system parameters, such as the number of antennas, SNR and the interference for each link. In particular, we show that an irreducible saturation point exists in the high SNR regime, while the ergodic rate under IC strategy is verified to be always better than that under BF strategy. We also reveal that the ergodic achievable rate under perfect CSI scales as log2M, whilst it reaches a ceiling with quantized CSI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate device-to-device (D2D) communication underlaying cellular networks with M-antenna base stations. We consider both beamforming (BF) and interference cancellation (IC) strategies under quantized channel state information (CSI), as well as, perfect CSI. We derive tight closed-form approximations of the ergodic achievable rate which hold for arbitrary transmit power, location of users and number of antennas. Based on these approximations, we derive insightful asymptotic expressions for three special cases namely high signal-to-noise (SNR), weak interference, and large M. In particular, we show that in the high SNR regime a ceiling effect exists which depends on the received signal-to-interference ratio and the number of antennas. Moreover, the achievable rate scales logarithmically with M. The ergodic achievable rate is shown to scale logarithmically with SNR and the antenna number in the weak interference case. When the BS is equipped with large number of antennas, we find that the ergodic achievable rate under quantized CSI reaches a saturated value, whilst it scales as log2M under perfect CSI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider the uplink of a single-cell massive multiple-input multiple-output (MIMO) system with inphase and quadrature-phase imbalance (IQI). This scenario is of particular importance in massive MIMO systems, where the deployment of lower-cost, lower-quality components is desirable to make massive MIMO a viable technology. Particularly, we investigate the effect of IQI on the performance of massive MIMO employing maximum-ratio combining (MRC) receivers. In order to study how IQI affects channel estimation, we derive a new channel estimator for the IQI-impaired model and show that IQI can substantially downgrade the performance of MRC receivers. Moreover, a low-complexity IQI compensation scheme, suitable for massive MIMO, is proposed which is based on the IQI coefficients' estimation and it is independent of the channel gain. The performance of the proposed compensation scheme is analytically evaluated by deriving a tractable approximation of the ergodic achievable rate and providing the asymptotic power scaling laws assuming transmission over Rayleigh fading channels with log-normal large-scale fading. Finally, we show that massive MIMO effectively suppresses the residual IQI effects, as long as, the compensation scheme is applied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a multiuser multicarrier downlink communication system in which the base station (BS) employs a large number of antennas. By assuming frequency-division duplex operation, we provide a beam domain channel model as the number of BS antennas grows asymptotically large. With this model, we first derive a closed-form upper bound on the achievable ergodic sum-rate before developing necessary conditions to asymptotically maximize the upper bound, with only statistical channel state information at the BS. Inspired by these conditions, we propose a beam division multiple access (BDMA) transmission scheme, where the BS communicates with users via different beams. For BDMA transmission, we design user scheduling to select users within non-overlapping beams, work out an optimal pilot design under a minimum mean square error criterion, and provide optimal pilot sequences by utilizing the Zadoff-Chu sequences. The proposed BDMA scheme reduces significantly the pilot overhead, as well as, the processing complexity at transceivers. Simulations demonstrate the high spectral efficiency of BDMA transmission and the advantages in the bit error rate performance of the proposed pilot sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the achievable ergodic sum-rate of multi-user multiple-input multiple-output systems in Ricean fading channels. We first derive a lower bound on the average signal-to-leakage-and-noise ratio by utilizing the Mullen's inequality, which is then used to analyze the effect of channel mean information on the achievable sum-rate. With these results, a novel statistical-eigenmode space-division multipleaccess downlink transmission scheme is proposed. For this scheme, we derive an exact closed-form expression for the achievable ergodic sum-rate. Our results show that the achievable ergodic sum-rate converges to a saturation value in the high signal-to-noise ratio (SNR) region and reaches to a lower limit value in the lower Ricean K-factor range. In addition, we present tractable upper and lower bounds, which are shown to be tight for any SNR and Ricean K-factor value. Finally, the theoretical analysis is validated via numerical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider a multiuser downlink wiretap network consisting of one base station (BS) equipped with AA antennas, NB single-antenna legitimate users, and NE single-antenna eavesdroppers over Nakagami-m fading channels. In particular, we introduce a joint secure transmission scheme that adopts transmit antenna selection (TAS) at the BS and explores threshold-based selection diversity (tSD) scheduling over legitimate users to achieve a good secrecy performance while maintaining low implementation complexity. More specifically, in an effort to quantify the secrecy performance of the considered system, two practical scenarios are investigated, i.e., Scenario I: the eavesdropper’s channel state information (CSI) is unavailable at the BS, and Scenario II: the eavesdropper’s CSI is available at the BS. For Scenario I, novel exact closed-form expressions of the secrecy outage probability are derived, which are valid for general networks with an arbitrary number of legitimate users, antenna configurations, number of eavesdroppers, and the switched threshold. For Scenario II, we take into account the ergodic secrecy rate as the principle performance metric, and derive novel closed-form expressions of the exact ergodic secrecy rate. Additionally, we also provide simple and asymptotic expressions for secrecy outage probability and ergodic secrecy rate under two distinct cases, i.e., Case I: the legitimate user is located close to the BS, and Case II: both the legitimate user and eavesdropper are located close to the BS. Our important findings reveal that the secrecy diversity order is AAmA and the slope of secrecy rate is one under Case I, while the secrecy diversity order and the slope of secrecy rate collapse to zero under Case II, where the secrecy performance floor occurs. Finally, when the switched threshold is carefully selected, the considered scheduling scheme outperforms other well known existing schemes in terms of the secrecy performance and complexity tradeoff