125 resultados para ENVIRONMENTS
Resumo:
For the first time in the open literature we present a full characterization of the performance of receiver diversity for the on-body channels found in body area networks. The study involved three commonly encountered diversity combining schemes: selection combination (SC), maximal ratio combining (MRC) and equal gain combining (EGC). Measurements were conducted for both stationary and mobile user scenarios in an anechoic chamber and open office area environment. Achievable diversity gain for various on-body dual branch diversity receivers, consisting of horizontal and vertical spatially separated antennas, was found to be dependent upon transmitter-receive array separation, user state and level of multipath contribution from the local environment. The maximum diversity gain (6.4 dB) was observed for a horizontal two branch MRC combiner while the transmitter and receiver were on opposite sides of the body, and the user was mobile in the open office area. A novel statistical characterization of the fading experienced in on-body diversity channels is also performed using purposely derived first and second order diversity statistics for combiners operating in Nakagami fading.
Resumo:
Environments that are hostile to life are characterized by reduced microbial activity which results in poor soil- and plant-health, low biomass and biodiversity, and feeble ecosystem development. Whereas the functional biosphere may primarily be constrained by water activity (a w) the mechanism(s) by which this occurs have not been fully elucidated. Remarkably we found that, for diverse species of xerophilic fungi at a w values of = 0.72, water activity per se did not limit cellular function. We provide evidence that chaotropic activity determined their biotic window, and obtained mycelial growth at water activities as low as 0.647 (below that recorded for any microbial species) by addition of compounds that reduced the net chaotropicity. Unexpectedly we found that some fungi grew optimally under chaotropic conditions, providing evidence for a previously uncharacterized class of extremophilic microbes. Further studies to elucidate the way in which solute activities interact to determine the limits of life may lead to enhanced biotechnological processes, and increased productivity of agricultural and natural ecosystems in arid and semiarid regions.
Influence of social status on the welfare of growing pigs housed in barren and enriched environments
Resumo:
One hundred and twenty-eight pigs were reared in barren or enriched environments from birth to slaughter at 21 weeks of age. Pigs remained as litter-mate groups until 8 weeks of age when they were mixed into groups of eight animals. These groups were balanced for gender and weight and contained two pigs from each of four different litters. Each pig was assigned high or low social status on the basis of relative success in aggressive interactions at mixing. Injury levels were assessed on a weekly basis from 8 to 2 1 weeks of age. Pigs were exposed to two group food competition tests after a period of food restriction at 10 weeks of age, and to an individual novel pen test at 11 weeks of age. Behavioural and plasma cortisol responses to both types of test were recorded. Low social status was associated with increased injuries to the head, neck and ears, and therefore reduced welfare. Pigs with low social status showed reduced resource-holding ability in the food competition test, and greater avoidance of a novel object during the novel pen test. It is suggested that avoidance of the novel object reflected 'learned' fearfulness in these individuals. Environmental enrichment did not negate the effect of low social status on injury levels, but did appear to reduce the negative influence of low social status on stress during food restriction, and led to a reduction in fearfulness in response to the novel pen test. These results suggest that environmental enrichment may improve the we/fare of growing pigs with low social status.
Resumo:
Haptic information originates from a different human sense (touch), therefore the quality of service (QoS) required to supporthaptic traffic is significantly different from that used to support conventional real-time traffic such as voice or video. Each type ofnetwork impairment has different (and severe) impacts on the user’s haptic experience. There has been no specific provision of QoSparameters for haptic interaction. Previous research into distributed haptic virtual environments (DHVEs) have concentrated onsynchronization of positions (haptic device or virtual objects), and are based on client-server architectures.We present a new peerto-peer DHVE architecture that further extends this to enable force interactions between two users whereby force data are sent tothe remote peer in addition to positional information. The work presented involves both simulation and practical experimentationwhere multimodal data is transmitted over a QoS-enabled IP network. Both forms of experiment produce consistent results whichshow that the use of specific QoS classes for haptic traffic will reduce network delay and jitter, leading to improvements in users’haptic experiences with these types of applications.