118 resultados para ELECTROCHEMICAL ADVANCED OXIDATION PROCESS
Resumo:
Microcystins (cyclic heptapeptides) are produced by a number of freshwater cyanobacteria and cause concern in potable water supplies due to their acute and chronic toxicity. The present study reports the structural characterization of the degradation products of the photocatalytic oxidation of microcystin-LR, so aiding the mechanistic understanding of this process. TiO2 photocatalysis is a promising technology for removal of these toxins from drinking water. However, before it can be adopted in any practical application it is necessary to have a sufficient knowledge of degradation byproducts and their potential toxicity. Liquid chromatography-mass spectrometry analysis demonstrated that the major destruction pathway of microcystin appears to be initiated via three mechanisms: UV irradiation, hydroxyl radical attack, and oxidation. UV irradiation caused geometrical isomerization of microcystin converting the (4E), (6E) of the Adda configuration to (4E), 6(Z) or 4(Z), 6(E). Hydroxyl radical attack on the conjugated diene structure of Adda moiety produced dihyroxylated products. Further oxidation cleaved the hydroxylated 4-5 and/or 6-7 bond of Adda to form aldehyde or ketone peptide residues, which then were oxidized into the corresponding carboxylic acids. Photocatalysis also hydrolyzed the peptide bond on the ring structure of microcystin to form linear structures although this appeared to be a minor pathway.
Resumo:
A comparative study between a classic and a wireless electrochemical promotion experiment was undertaken as a tool towards the better understanding of both systems. The catalytic modification of a platinum catalyst for ethylene oxidation was studied. The catalyst was supported on yttria-stabilised-zirconia (YSZ), a known pure oxide ion conductor, for the classic experiment and La 0.6Sr0.4Co0.2Fe0.8O 3-δ-a mixed oxide ion electronic conductor-was used for the wireless experiment. The two systems showed certain similarities in terms of the reaction classification (in both cases electrophobic behaviour was observed) and the promotion mechanism. Significant difference was observed in the time scales and the reversibility of the induced rate modification. © 2008 Springer Science+Business Media B.V.
Resumo:
Key Performance Indicators (KPIs) and their predictions are widely used by the enterprises for informed decision making. Nevertheless , a very important factor, which is generally overlooked, is that the top level strategic KPIs are actually driven by the operational level business processes. These two domains are, however, mostly segregated and analysed in silos with different Business Intelligence solutions. In this paper, we are proposing an approach for advanced Business Simulations, which converges the two domains by utilising process execution & business data, and concepts from Business Dynamics (BD) and Business Ontologies, to promote better system understanding and detailed KPI predictions. Our approach incorporates the automated creation of Causal Loop Diagrams, thus empowering the analyst to critically examine the complex dependencies hidden in the massive amounts of available enterprise data. We have further evaluated our proposed approach in the context of a retail use-case that involved verification of the automatically generated causal models by a domain expert.
Resumo:
In order to reduce potential uncertainties and conservatism in welded panel analysis procedures, understanding of the relationships between welding process parameters and static strength is required. The aim of this study is to determine and characterize the key process induced properties of advanced welding assembly methods on stiffened panel local buckling and collapse performance. To this end, an in-depth experimental and computational study of the static strength of a friction stir welded fuselage skin-stiffener panel subjected to compression loading has been undertaken. Four welding process effects, viz. the weld joint width, the width of the weld Heat Affected Zone, the strength of material within the weld Heat Affected Zone and the magnitude of welding induced residual stress, are investigated. A fractional factorial experiment design method (Taguchi) has been applied to identify the relative importance of each welding process effect and investigate effect interactions on both local skin buckling and crippling collapse performance. For the identified dominant welding process effects, parametric studies have been undertaken to identify critical welding process effect magnitudes and boundaries. The studies have shown that local skin buckling is principally influenced by the magnitude of welding induced residual stress and that the strength of material in the Heat Affected Zone and the magnitude of the welding induced residual stress have the greatest influence on crippling collapse behavior.
--------------------------------------------------------------------------------
Reaxys Database Information
|
Resumo:
To evaluate the effect of mass transfer limitations in the three-phase oxidation of cinnamyl alcohol carried out in toluene and an ionic liquid (1-butyl-3-methyl-imidazolium bis(trifluoromethylsulphonyl)imide), studies have been performed in a rotating disc reactor and compared with those carried out in a stirred tank reactor where mass transfer effects are considered negligible. High catalyst efficiencies are found in the stirred tank reactor with the use of both ionic liquid and toluene, although there is a decrease in rate for the ionic liquid reactions. In contrast, internal pore diffusion limits the reaction in both solvents in the rotating disc reactor. This mass transfer resistance reduces the problem of overoxidation of the metal surface when the reaction is carried out in toluene, leading to significantly higher rates of reaction than expected, although at the cost of decreased selectivity.
Resumo:
Suppression of angiogenesis during diabetes is a recognized phenomenon but is less appreciated within the context of diabetic retinopathy. The current study has investigated regulation of retinal angiogenesis by diabetic serum and determined if advanced glycation end products (AGEs) could modulate this response, possibly via AGE-receptor interactions. A novel in vitro model of retinal angiogenesis was developed and the ability of diabetic sera to regulate this process was quantified. AGE-modified serum albumin was prepared according to a range of protocols, and these were also analyzed along with neutralization of the AGE receptors galectin-3 and RAGE. Retinal ischemia and neovascularization were also studied in a murine model of oxygen-induced proliferative retinopathy (OIR) in wild-type and galectin-3 knockout mice (gal3(-/-)) after perfusion of preformed AGEs. Serum from nondiabetic patients showed significantly more angiogenic potential than diabetic serum (P <0.0001) and within the diabetic group, poor glycemic control resulted in more AGEs but less angiogenic potential than tight control (P <0.01). AGE-modified albumin caused a dose-dependent inhibition of angiogenesis (P <0.001), and AGE receptor neutralization significantly reversed the AGE-mediated suppression of angiogenesis (P <0.01). AGE-treated wild-type mice showed a significant increase in inner retinal ischemia and a reduction in neovascularization compared with non-AGE controls (P <0.001). However, ablation of galectin-3 abolished the AGE-mediated increase in retinal ischemia and restored the neovascular response to that seen in controls. The data suggest a significant suppression of angiogenesis by the retinal microvasculature during diabetes and implicate AGEs and AGE-receptor interactions in its causation.
Liquid-phase oxidation of a pyrimidine thioether on Ti-SBA-15 and UL-TS-1 catalysts in ionic liquids
Resumo:
The introduction of advanced welding methods as an alternative joining process to riveting in the manufacture of primary aircraft structure has the potential to realize reductions in both manufacturing costs and structural weight. However, welding processes can introduce undesirable residual stresses and distortions in the final fabricated components, as well as localized loss of mechanical properties at the weld joints. The aim of this research is to determine and characterize the key process effects of advanced welding assembly methods on stiffened panel static strength performance. This in-depth understanding of the relationships between welding process effects and buckling and collapse strength is required to achieve manufacturing cost reductions without introducing structural analysis uncertainties and hence conservative over designed welded panels. This current work is focused at the sub-component level and examines the static strength of friction stir welded multi stiffener panels. The undertaken experimental and computational studies have demonstrated that local skin buckling is predominantly influenced by the magnitude of welding induced residual stresses and associated geometric distortions, whereas panel collapse behavior is sensitive to the lateral width of the physically joined skin and stiffener flange material, the strength of material in the Heat Affected Zone as well as the magnitude of the welding induced residual stresses. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
--------------------------------------------------------------------------------
Reaxys Database Information
|
Resumo:
Using cyclic voltammetry, the electrochemical reduction of benzoic acid (BZA) has been studied at Pt and Au microelectrodes (10 and 2 mu m diameter) in six room temperature ionic liquids (RTILs), namely [C(2)mim][NTf2], [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][BF4], [C(4)mim][NO3], and [C(4)mim][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [BF4](-) = tetrafluoroborate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all cases, a main reduction peak was observed, assigned to the reduction of BZA in a CE mechanism, where dissociation of the acid takes place before electron transfer to the dissociated proton. One anodic peak was observed on the reverse sweep, assigned to the oxidation of adsorbed hydrogen, and a reductive
Resumo:
The electrochemical reduction of I atm hydrogen sulfide gas (H2S) has been studied at a platinum microelectrode (10 mu m diameter) in five room temperature ionic liquids (RTILs): [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3] and [C(4)mim]][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [OTf](-) = trifluoromethlysulfonate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all five RTILs, a chemically irreversible reduction peak was observed on the reductive sweep, followed by one or two oxidative peaks on the reverse scan. The oxidation peaks were assigned to the oxidation of SH- and adsorbed hydrogen. In addition, a small reductive peak was observed prior to the large wave in [C(2)mim]][NTf2] only, which may be due to the reduction of a sulfur impurity in the gas. Potential-step chronoamperometry was carried out on the reduction peak of H2S, revealing diffusion coefficients of 3.2, 4.6, 2.4, 2.7, and 3.1 x 10(-11) m(2) s(-1) and solubilities of 529, 236, 537, 438, and 230 mM in [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3], and [C(4)mim]][PF6], respectively. The solubilities of H2S in RTILs are much higher than those reported in conventional molecular solvents, suggesting that RTILs may be very favorable gas sensing media for H2S detection.
Resumo:
The electrochemical oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) has been studied by cyclic voltammetry and potential step chronoamperometry at 303 K in five ionic liquids, namely [C(2)mim] [NTf2], [C(4)mim] [NTf2] [C(4)mpyrr] [NTf2] [C(4)mim] [BF4], and [C(4)mim] [PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [BF4](-) = tetrafluoroborate, and [PF6](-) = hexafluorophosphate). Diffusion coefficients, D, of 4.87, 3.32, 2.05, 1.74, and 1.34 x 10(-11) m(2) s(-1) and heterogeneous electron-transfer rate constants, k(0), of 0.0109, 0.0103, 0.0079, 0.0066, and 0.0059 cm s(-1) were calculated for TMPD in [C(2)mim] [NTf2], [C(4)mim] [NTf2], [C(4)mpyrr] [NTf2], [C(4)mim] [BF4], and [C(4)mim] [PF6], respectively, at 303 K. The oxidation of TMPD in [C4mim][PF6] was also carried out at increasing temperatures from 303 to 343 K, with an activation energy for diffusion of 32.3 kJ mol(-1). k(0) was found to increase systematically with increasing temperature, and an activation energy of 31.4 kJ mol(-1) was calculated. The study was extended to six other p-phenylenediamines with alkyl/phenyl group substitutions. D and k(0) values were calculated for these compounds in [C(2)mim] [NTf2], and it was found that k(0) showed no obvious relationship with the hydrodynamic radius, r.
Resumo:
The electrochemical oxidation of 1-butyl-3-methylimidazolium iodide, [C(4)mim]I, has been investigated by cyclic voltammetry at a platinum microelectrode at varying concentrations in the RTIL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(4)mim][NTf2]. Two oxidation peaks were observed. The first peak is assigned to the oxidation of iodide to triiodide, in an overall two-electron process: 3I(-)- 2e(-) -> I-3(-). At higher potentials, the electrogenerated triiodide oxidizes to iodine, in an overall one-electron process: I-3(-) - e(-) -> 3/2I(2). An average diffusion coefficient, D, for I- of 1.55 x 10(-11) m(2) s(-1) was obtained. A digital simulation program was used to simulate the voltammetric response, and kinetic parameters were successfully extracted. The parameters deduced from the simulation include D for I-, I-3(-), and I-2 and K-eq,K-2, the equilibrium constant for the reaction of iodide and iodine to form triiodide. Values for these parameters are of the same order as those previously published for the oxidation of Br- in the same RTIL [Allen et al. J. Electroanal. Chem. 2005, 575, 311]. Next, the cyclic voltammetry of five different inorganic iodide salts was studied by dissolving small amounts of the solid in [C(4)mim][NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 0.55, 1.14, 1.23, 1.44, and 1.33 x 10(-11) m(2) s(-1) and solubilities of 714, 246, 54, 83, and 36 mM for LiI, NaI, KI, RbI, and CsI, respectively. The slightly smaller diffusion coefficients for the XI salts (compared to [C(4)mim]I) may indicate that I- is ion-paired with Li+, Na+, K+, Rb+, and Cs+ in the RTIL medium.
Resumo:
First, the direct and indirect electrochemical oxidation of ammonia has been studied by cyclic voltammetry at glassy carbon electrodes in propylene carbonate. In the case of the indirect oxidation of ammonia, its analytical utility of indirect for ammonia sensing was examined in the range from 10 and 100 ppm by measuring the peak current of new wave resulting from reaction between ammonia and hydroquinone, as function of ammonia concentration, giving a sensitivity 1.29 x 10(-7) A ppm(-1) (r(2)=0.999) and limit-of-detection 5 ppm ammonia. Further, the direct oxidation of ammonia has been investigated in several room temperature ionic liquids (RTILs), namely 1-butyl-3-methylimidazolium tetrafluoroborate ([C(4)mim] [BF4]), 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim] [OTf]), 1-Ethyl -3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(2)mim] [NTf2]), 1-butyl-3-methylimidazolium bis(tritluoromethylsulfonyl)imide ([C4mim] [NTf2]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim] [PF6]) on a 10 put diameter Pt microdisk electrode. In four of the RTILs studied, the cyclic voltammetric analysis suggests that ammonia is initially oxidized to nitrogen, N-2, and protons, which are transferred to an ammonia molecule, forming NH4+ via the protonation of the anion(s) (A(-)). However, in [C4mim] [PF6], the protonated anion was formed first, followed by NH4+. In all five RTILs, both HA and NH4+ are reduced at the electrode surface, forming hydrogen gas, which is then oxidized. The analytical ability of this work has also been explored further, giving a limit-of-detection close to 50 ppm in [C(2)mim] [NTf2], [C(4)mim] [OTf], [C(4)mim] [BF4], with a sensitivity of ca. 6 x 10(-7) A ppm(-1) (r(2) = 0.999) for all three ionic liquids, showing that the limit of detection was ca. ten times larger than that in propylene carbonate since ammonia in propylene carbonate might be more soluble in comparison with RTILs when considering the higher viscosity of RTILs.
Resumo:
Voltammetric studies of PCl3 and POCl3 have not been reported in the literature to date, probably due to the instability of these molecules in conventional aprotic solvents giving unstable and irreproducible results. From a previous study [Amigues et al. Chem. Commun. 2005, 1-4], it was found that ionic liquids have the ability to offer a uniquely stable solution phase environment for the study of these phosphorus compounds. Consequently, the electrochemistry of PCl3 and POCl3 has been studied by cyclic voltammetry on a gold microelectrode in the ionic liquid [C(4)mpyrr][N(Tf)(2)] (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide). For both compounds, reduction and oxidation waves were observed and a tentative assignment of the waves is given. For PCl3, the reduction was thought to proceed via the following mechanism: PCl3 + e(-) h reversible arrow PCl3-, PCl3- reversible arrow Cl- + (PCl2)-Cl-center dot, (and) Cl- + PCl3 h PCl4-. For POCl3, the suggested reduction mechanism was analogous to that of PCl3: POCl3 + e(-) reversible arrow POCl3-, POCl3- reversible arrow Cl- + (POCl2)-O-center dot, and Cl- + POCl3 h POCl4-. In both cases (PCl2)-Cl-center dot and (POCl2)-O-center dot are likely to engage in further reactions. Potential step microdisk chronoamperometry was carried out on the reductive waves of PCl3 and POCl3 to measure diffusion coefficients and number of electrons transferred. It was found that the diffusion of PCl3 was unusually slow (3.1 x 10(-12) m(2) s(-1)): approximately 1 order of magnitude less than that for POCl3 (2.2 x 10(-11) m(2) s(-1)). For both PCl3 and POCl3, a