60 resultados para EDGE DISLOCATIONS
Resumo:
Using the theory of Eliashberg and Nambu for strong-coupling superconductors, we have calculated the gap function for a model superconductor and a selection of real superconductors includong the elements Al, Sn, Tl, Nb, In, Pb and Hg and one alloy, Bi2Tl. We have determined thetemperature-dependent gap edge in each and found that in materials with weak electron-phonon ($\lambda 1.20$), not only is the gap edge double valued but it also departs significantly from the BCS form and develops a shoulderlike structure which may, in some cases, denote a gap edge exceeding the $T = 0$ value. These computational results support the insights obtained by Leavens in an analytic consideration of the general problem. Both the shoulder and double value arise from a common origin seated in the form of the gap function in strong coupled materials at finite temperatures. From the calculated gap function, we can determine the densities of states in the materials and the form of the tunneling current-voltage characteristics for junctions with these materials as electroddes. By way of illustration, results are shown for the contrasting cases of Sn ($\lambda=0.74$) and Hg ($\lambad=1.63$). The reported results are distinct in several ways from BCS predictions and provide an incentive determinative experimental studies with techniques such as tunneling and far infrared absorption.
Pulsating or not? A search for hidden pulsations below the red edge of the ZZ Ceti instability strip
Resumo:
The location of the red edge of the ZZ Ceti instability strip is defined observationally as being the lowest temperature for which a white dwarf with a H-rich atmosphere (DA) is known to exhibit periodic brightness variations. Whether this cut-off in flux variations is actually due to a cessation of pulsation or merely due to the attenuation of any variations by the convection zone, rendering them invisible, is not clear. The latter is a theoretical possibility because with decreasing effective temperature, the emergent flux variations become an ever smaller fraction of the amplitude of the flux variations in the interior. In contrast to the flux variations, the visibility of the velocity variations associated with the pulsations is not thought to be similarly affected. Thus, models imply that were it still pulsating, a white dwarf just below the observed red edge should show velocity variations. In order to test this possibility, we used time-resolved spectra of three DA white dwarfs that do not show photometric variability, but which have derived temperatures only slightly lower than the coolest ZZ Ceti variables. We find that none of our three targets show significant periodic velocity variations, and set 95% confidence limits on amplitudes of 3.0, 5.2, and 8.8 km s(-1). Thus, for two out of our three objects, we can rule out velocity variations as large as 5.4 km s(-1) observed for the strongest mode in the cool white dwarf pulsator ZZ Psc. In order to verify our procedures, we also examined similar data of a known ZZ Ceti, HL Tau 76. Applying external information from the light curve, we detect significant velocity variations for this object with amplitudes of up to 4 km s(-1). Our results suggest that substantial numbers of pulsators having large velocity amplitudes do not exist below the observed photometric red edge and that the latter probably reflects a real termination of pulsations.
Resumo:
This essay examines Gower's oft-discussed flexible or situational ethics with a focus on the way in which he positions his poems, especially the Confessio Amantis between several different elements. His multi-linguality has concerned readers for a long time, as have his idea of the "middle weie" and, more recently, the way in which he does not offer an overall fixed moral sense but rather focuses on the contradictions inherent in the human condition. The central thesis of the essay is that Gower uses all of these elements to create a poetic that is placed on the edge rather than in a commonplace centre. It is here that we can see cracks and fissures emerge in Gower's work, and it is here that we can begin to better understand his poetics.
Resumo:
The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available.
Resumo:
High resolution spectra of an early B-type star associated with the H II region detected by de Geus et al. (1993) are analysed using LTE model atmosphere techniques to derive stellar atmospheric parameters and a chemical composition. A distance to the star of 8.2 kpc is estimated, placing it near the edge of the galactic disk and closer than the kinematic distance of 20 kpc to the H II region, calculated by de Geus et al. A differential line by line abundance analysis with respect to the spectroscopic standard tau Sco indicates a significant metal depletion, with elements down on average by -0.5 dex.
Resumo:
GM-CSF is a potent proinflammatory cytokine that plays a pathogenic role in the CNS inflammatory disease experimental autoimmune encephalomyelitis. As IL-27 alleviates experimental autoimmune encephalomyelitis, we hypothesized that IL-27 suppresses GM-CSF expression by T cells. We found that IL-27 suppressed GM-CSF expression in CD4+ and CD8+ T cells in splenocyte and purified T cell cultures. IL-27 suppressed GM-CSF in Th1, but not Th17, cells. IL-27 also suppressed GM-CSF expression by human T cells in nonpolarized and Th1- but not Th17-polarized PBMC cultures. In vivo, IL-27p28 deficiency resulted in increased GM-CSF expression by CNS-infiltrating T cells during Toxoplasma gondii infection. Although in vitro suppression of GM-CSF by IL-27 was independent of IL-2 suppression, IL-10 upregulation, or SOCS3 signaling, we observed that IL-27-driven suppression of GM-CSF was STAT1 dependent. Our findings demonstrate that IL-27 is a robust negative regulator of GM-CSF expression in T cells, which likely inhibits T cell pathogenicity in CNS inflammation.
Resumo:
We report the direct imaging of surface plasmon propagation on thin silver films using the photon scanning tunneling microscope. It is found that the surface plasmon remains tightly confined in the original launch direction with insignificant scattering to other momentum states. A propagation length of 13.2 mum is measured at lambda = 632.8 nm. We also present images showing the interaction of a surface plasmon with the edge of the metal film supporting it. The most remarkable feature is the absence of a specularly reflected beam.
Resumo:
Engineers have proposed the idea that there may be some arching action present in bridge deck cantilever overhangs stiffened along their longitudinal free edge, via a traffic barrier, subjected to a wheel load. This paper includes the details of a full-scale corrosion-free bridge deck with cantilever overhangs stiffened along their longitudinal free edge by a traffic barrier wall that has been constructed and tested under static and fatigue wheel loads at the University of Manitoba. It also reviews experimental test results and postulates various discussions that suggest the presence of arching-action in cantilever slab overhangs. Test results indicated static ultimate load capacities significantly greater than the ultimate capacity if the mode of failure and behavior of the cantilever overhang was completely flexural. These early results confirm and indicate the presence of arching-action resulting in a significant break-through in cantilever behavior when subjected to a wheel load. The theory to account for this arching-action is not yet developed and further research should be conducted.
Resumo:
3C–SiC (the only polytype of SiC that resides in a diamond cubic lattice structure) is a relatively new material that exhibits most of the desirable engineering properties required for advanced electronic applications. The anisotropy exhibited by 3C–SiC during its nanometric cutting is significant, and the potential for its exploitation has yet to be fully investigated. This paper aims to understand the influence of crystal anisotropy of 3C–SiC on its cutting behaviour. A molecular dynamics simulation model was developed to simulate the nanometric cutting of single-crystal 3C–SiC in nine (9) distinct combinations of crystal orientations and cutting directions, i.e. (1?1?1) <-1?1?0>, (1?1?1) <-2?1?1>, (1?1?0) <-1?1?0>, (1?1?0) <0?0?1>, (1?1?0) <1?1?-2>, (0?0?1) <-1?1?0>, (0?0?1) <1?0?0>, (1?1?-2) <1?-1?0> and (1?-2?0) <2?1?0>.
In order to ensure the reliability of the simulation results, two separate simulation trials were carried out with different machining parameters. In the first trial, a cutting tool rake angle of -25°, d/r (uncut chip thickness/cutting edge radius) ratio of 0.57 and cutting velocity of 10 m s-1 were used whereas a second trial was done using a cutting tool rake angle of -30°, d/r ratio of 1 and cutting velocity of 4 m s-1. Both the trials showed similar anisotropic variation.
The simulated orthogonal components of thrust force in 3C–SiC showed a variation of up to 45%, while the resultant cutting forces showed a variation of 37%. This suggests that 3C–SiC is highly anisotropic in its ease of deformation. These results corroborate with the experimentally observed anisotropic variation of 43.6% in Young's modulus of 3C–SiC. The recently developed dislocation extraction algorithm (DXA) [1, 2] was employed to detect the nucleation of dislocations in the MD simulations of varying cutting orientations and cutting directions. Based on the overall analysis, it was found that 3C–SiC offers ease of deformation on either (1?1?1) <-1?1?0>, (1?1?0) <0?0?1>, or (1?0?0) <1?0?0> setups.
Resumo:
This article offers a critical conceptual discussion and refinement of Chomsky’s (2000, 2001, 2007, 2008) phase system, addressing many of the problematic aspects highlighted in the critique of Boeckx & Grohmann (2007) and seeking to resolve these issues, in particular the stipulative and arbitrary properties of phases and phase edges encoded in the (various versions of the) Phase Impenetrability Condition (PIC). Chomsky’s (2000) original conception of phases as lexical subarrays is demonstrated to derive these properties straightforwardly once a single assumption about the pairwise composition of phases is made, and the PIC is reduced to its necessary core under the Strong Minimalist Thesis (SMT)—namely, the provision of an edge. Finally, a comparison is undertaken of the lexical-subarray conception of phases with the feature-inheritance system of Chomsky 2007, 2008, in which phases are simply the locus of uninterpretable features (probes). Both conceptions are argued to conform to the SMT, and both converge on a pairwise composition of phases. However, the two conceptions of phases are argued to be mutually incompatible in numerous fundamental ways, with no current prospect of unification. The lexical-subarray conception of phases is then to be preferred on grounds of greater empirical adequacy.