43 resultados para Dynamic Models
Resumo:
Emotion research has long been dominated by the “standard method” of displaying posed or acted static images of facial expressions of emotion. While this method has been useful it is unable to investigate the dynamic nature of emotion expression. Although continuous self-report traces have enabled the measurement of dynamic expressions of emotion, a consensus has not been reached on the correct statistical techniques that permit inferences to be made with such measures. We propose Generalized Additive Models and Generalized Additive Mixed Models as techniques that can account for the dynamic nature of such continuous measures. These models allow us to hold constant shared components of responses that are due to perceived emotion across time, while enabling inference concerning linear differences between groups. The mixed model GAMM approach is preferred as it can account for autocorrelation in time series data and allows emotion decoding participants to be modelled as random effects. To increase confidence in linear differences we assess the methods that address interactions between categorical variables and dynamic changes over time. In addition we provide comments on the use of Generalized Additive Models to assess the effect size of shared perceived emotion and discuss sample sizes. Finally we address additional uses, the inference of feature detection, continuous variable interactions, and measurement of ambiguity.
Resumo:
This paper investigates the characteristics of the complex received signal in body area networks for two environments at the opposite ends of the multipath spectrum at 2.45 GHz. Important attributes of the complex channel such as the Gaussianity of the quadrature components and power imbalance, which form the basis of many popular fading models, are investigated. It is found that in anechoic environments the assumption of Gaussian distributed quadrature components will not always yield a satisfactory fit. Using a complex received signal model which considers a non-isotropic scattered signal contribution along with the presence of an optional dominant signal component, we use an autocorrelation function originally derived for mobile-to-mobile communications to model the temporal behavior of a range of dynamic body area network channels with considerable success. In reverberant environments, it was observed that the real part of the complex autocorrelation function for body area network channels decayed slightly quicker than that expected in traditional land mobile channels. © 2013 IEEE.
Resumo:
Abstract—Power capping is an essential function for efficient power budgeting and cost management on modern server systems. Contemporary server processors operate under power caps by using dynamic voltage and frequency scaling (DVFS). However, these processors are often deployed in non-uniform memory
access (NUMA) architectures, where thread allocation between cores may significantly affect performance and power consumption. This paper proposes a method which maximizes performance under power caps on NUMA systems by dynamically optimizing two knobs: DVFS and thread allocation. The method selects the optimal combination of the two knobs with models based on artificial neural network (ANN) that captures the nonlinear effect of thread allocation on performance. We implement
the proposed method as a runtime system and evaluate it with twelve multithreaded benchmarks on a real AMD Opteron based NUMA system. The evaluation results show that our method outperforms a naive technique optimizing only DVFS by up to
67.1%, under a power cap.
Resumo:
Product Line software Engineering depends on capturing the commonality and variability within a family of products, typically using feature modeling, and using this information to evolve a generic reference architecture for the family. For embedded systems, possible variability in hardware and operating system platforms is an added complication. The design process can be facilitated by first exploring the behavior associated with features. In this paper we outline a bidirectional feature modeling scheme that supports the capture of commonality and variability in the platform environment as well as within the required software. Additionally, 'behavior' associated with features can be included in the overall model. This is achieved by integrating the UCM path notation in a way that exploits UCM's static and dynamic stubs to capture behavioral variability and link it to the feature model structure. The resulting model is a richer source of information to support the architecture development process.
Resumo:
This paper presents a statistical model for the thermal behaviour of the line model based on lab tests and field measurements. This model is based on Partial Least Squares (PLS) multi regression and is used for the Dynamic Line Rating (DLR) in a wind intensive area. DLR provides extra capacity to the line, over the traditional seasonal static rating, which makes it possible to defer the need for reinforcement the existing network or building new lines. The proposed PLS model has a number of appealing features; the model is linear, so it is straightforward to use for predicting the line rating for future periods using the available weather forecast. Unlike the available physical models, the proposed model does not require any physical parameters of the line, which avoids the inaccuracies resulting from the errors and/or variations in these parameters. The developed model is compared with physical model, the Cigre model, and has shown very good accuracy in predicting the conductor temperature as well as in determining the line rating for future time periods.
Resumo:
Even though computational power used for structural analysis is ever increasing, there is still a fundamental need for testing in structural engineering, either for validation of complex numerical models or to assess material behaviour. In addition to analysis of structures using scale models, many structural engineers are aware to some extent of cyclic and shake-table test methods, but less so of ‘hybrid testing’. The latter is a combination of physical testing (e.g. hydraulic
actuators) and computational modelling (e.g. finite element modelling). Over the past 40 years, hybrid testing of engineering structures has developed from concept through to maturity to become a reliable and accurate dynamic testing technique. The hybrid test method provides users with some additional benefits that standard dynamic testing methods do not, and the method is more cost-effective in comparison to shake-table testing. This article aims to provide the reader with a basic understanding of the hybrid test method, including its contextual development and potential as a dynamic testing technique.
Resumo:
In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying Itoˆ stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.
Resumo:
Thermal comfort is defined as “that condition of mind which expresses satisfaction with the thermal environment’ [1] [2]. Field studies have been completed in order to establish the governing conditions for thermal comfort [3]. These studies showed that the internal climate of a room was the strongest factor in establishing thermal comfort. Direct manipulation of the internal climate is necessary to retain an acceptable level of thermal comfort. In order for Building Energy Management Systems (BEMS) strategies to be efficiently utilised it is necessary to have the ability to predict the effect that activating a heating/cooling source (radiators, windows and doors) will have on the room. The numerical modelling of the domain can be challenging due to necessity to capture temperature stratification and/or different heat sources (radiators, computers and human beings). Computational Fluid Dynamic (CFD) models are usually utilised for this function because they provide the level of details required. Although they provide the necessary level of accuracy these models tend to be highly computationally expensive especially when transient behaviour needs to be analysed. Consequently they cannot be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. The test case used in this work is a room of the Environmental Research Institute (ERI) Building at the University College Cork (UCC). ROMs have shown that they are sufficiently accurate with a total error of less than 1% and successfully retain a satisfactory representation of the phenomena modelled. The number of zones in a ROM defines the size and complexity of that ROM. It has been observed that ROMs with a higher number of zones produce more accurate results. As each ROM has a time to solution of less than 20 seconds they can be integrated into the BEMS of a building which opens the potential to real time physics based building energy modelling.
Resumo:
Compensation for the dynamic response of a temperature sensor usually involves the estimation of its input on the basis of the measured output and model parameters. In the case of temperature measurement, the sensor dynamic response is strongly dependent on the measurement environment and fluid velocity. Estimation of time-varying sensor model parameters therefore requires continuous textit{in situ} identification. This can be achieved by employing two sensors with different dynamic properties, and exploiting structural redundancy to deduce the sensor models from the resulting data streams. Most existing approaches to this problem assume first-order sensor dynamics. In practice, however second-order models are more reflective of the dynamics of real temperature sensors, particularly when they are encased in a protective sheath. As such, this paper presents a novel difference equation approach to solving the blind identification problem for sensors with second-order models. The approach is based on estimating an auxiliary ARX model whose parameters are related to the desired sensor model parameters through a set of coupled non-linear algebraic equations. The ARX model can be estimated using conventional system identification techniques and the non-linear equations can be solved analytically to yield estimates of the sensor models. Simulation results are presented to demonstrate the efficiency of the proposed approach under various input and parameter conditions.
Resumo:
Extrusion is one of the major methods for processing polymeric materials and the thermal homogeneity of the process output is a major concern for manufacture of high quality extruded products. Therefore, accurate process thermal monitoring and control are important for product quality control. However, most industrial extruders use single point thermocouples for the temperature monitoring/control although their measurements are highly affected by the barrel metal wall temperature. Currently, no industrially established thermal profile measurement technique is available. Furthermore, it has been shown that the melt temperature changes considerably with the die radial position and hence point/bulk measurements are not sufficient for monitoring and control of the temperature across the melt flow. The majority of process thermal control methods are based on linear models which are not capable of dealing with process nonlinearities. In this work, the die melt temperature profile of a single screw extruder was monitored by a thermocouple mesh technique. The data obtained was used to develop a novel approach of modelling the extruder die melt temperature profile under dynamic conditions (i.e. for predicting the die melt temperature profile in real-time). These newly proposed models were in good agreement with the measured unseen data. They were then used to explore the effects of process settings, material and screw geometry on the die melt temperature profile. The results showed that the process thermal homogeneity was affected in a complex manner by changing the process settings, screw geometry and material.
Resumo:
BACKGROUND: Schistosomiasis remains a major public health issue, with an estimated 230 million people infected worldwide. Novel tools for early diagnosis and surveillance of schistosomiasis are currently needed. Elevated levels of circulating microRNAs (miRNAs) are commonly associated with the initiation and progression of human disease pathology. Hence, serum miRNAs are emerging as promising biomarkers for the diagnosis of a variety of human diseases. This study investigated circulating host miRNAs commonly associated with liver diseases and schistosome parasite-derived miRNAs during the progression of hepatic schistosomiasis japonica in two murine models.
METHODOLOGY/PRINCIPAL FINDINGS: Two mouse strains (C57BL/6 and BALB/c) were infected with a low dosage of Schistosoma japonicum cercariae. The dynamic patterns of hepatopathology, the serum levels of liver injury-related enzymes and the serum circulating miRNAs (both host and parasite-derived) levels were then assessed in the progression of schistosomiasis japonica. For the first time, an inverse correlation between the severity of hepatocyte necrosis and the level of liver fibrosis was revealed during S. japonicum infection in BALB/c, but not in C57BL/6 mice. The inconsistent levels of the host circulating miRNAs, miR-122, miR-21 and miR-34a in serum were confirmed in the two murine models during infection, which limits their potential value as individual diagnostic biomarkers for schistosomiasis. However, their serum levels in combination may serve as a novel biomarker to mirror the hepatic immune responses induced in the mammalian host during schistosome infection and the degree of hepatopathology. Further, two circulating parasite-specific miRNAs, sja-miR-277 and sja-miR-3479-3p, were shown to have potential as diagnostic markers for schistosomiasis japonica.
CONCLUSIONS/SIGNIFICANCE: We provide the first evidence for the potential of utilizing circulating host miRNAs to indicate different immune responses and the severity of hepatopathology outcomes induced in two murine strains infected with S. japonicum. This study also establishes a basis for the early and cell-free diagnosis of schistosomiasis by targeting circulating schistosome parasite-derived miRNAs.
Resumo:
Ground-source heat pump (GSHP) systems represent one of the most promising techniques for heating and cooling in buildings. These systems use the ground as a heat source/sink, allowing a better efficiency thanks to the low variations of the ground temperature along the seasons. The ground-source heat exchanger (GSHE) then becomes a key component for optimizing the overall performance of the system. Moreover, the short-term response related to the dynamic behaviour of the GSHE is a crucial aspect, especially from a regulation criteria perspective in on/off controlled GSHP systems. In this context, a novel numerical GSHE model has been developed at the Instituto de Ingeniería Energética, Universitat Politècnica de València. Based on the decoupling of the short-term and the long-term response of the GSHE, the novel model allows the use of faster and more precise models on both sides. In particular, the short-term model considered is the B2G model, developed and validated in previous research works conducted at the Instituto de Ingeniería Energética. For the long-term, the g-function model was selected, since it is a previously validated and widely used model, and presents some interesting features that are useful for its combination with the B2G model. The aim of the present paper is to describe the procedure of combining these two models in order to obtain a unique complete GSHE model for both short- and long-term simulation. The resulting model is then validated against experimental data from a real GSHP installation.
Resumo:
The development of new learning models has been of great importance throughout recent years, with a focus on creating advances in the area of deep learning. Deep learning was first noted in 2006, and has since become a major area of research in a number of disciplines. This paper will delve into the area of deep learning to present its current limitations and provide a new idea for a fully integrated deep and dynamic probabilistic system. The new model will be applicable to a vast number of areas initially focusing on applications into medical image analysis with an overall goal of utilising this approach for prediction purposes in computer based medical systems.