37 resultados para Dual-phase steel
Resumo:
A dual-reflector antenna composed by a small reconfigurable reflectarray subreflector and a large parabolic main reflector is proposed for beam scanning application in the 120 GHz frequency band. The beam scanning is achieved by changing the phase distribution on the reflectarray surface which is supposed to contain reconfigurable cells. The phase distribution for the different beam deflecting states is obtained with a synthesis technique based on the analysis of the antenna in receive mode.
Resumo:
Free space transmission of an on-off modulated sinusoidal signal through a phase conjugating lens (PCL) is theoretically examined using a combined time/frequency domain approach. The on-off keyed (OOK) signal is generated by a dipole antenna located in the far-field zone of the lens. The PCL consists of a dual layer of antenna elements interconnected via phase conjugating circuitry. We demonstrate that electromagnetic interference between antenna elements creates spatially localised areas of good-quality reception and zones where the signal is significantly denigrated by interference. Next, it is shown that destructive interference and packet desynchronisation effects critically depend on bit rate. It is also shown that a circular concave lens can be used to produce high-quality signal reception in a given direction while suppressing signal reception in all other directions. The effect that the bandwidth of the phase conjugating unit has on the transmitted signal properties for the cases of high and low bit rate OOK modulation are studied and a signal quality characterisation scheme is proposed which uses cross-correlation. The results of the study yields understanding of the performance of phase conjugating arrays under OOK modulation. The work suggests a novel approach for realising a secure communication wireless system.
Resumo:
Constitutive equations including an Arrhenius term have been applied to analyze the hot deformation behavior of a nitride-strengthened (NS) martensitic heat resistant steel in temperature range of 900–1200 °C and strain rate range of 0.001–10 /s. On the basis of analysis of the deformation data, the stress–strain curves up to the peak were divided into four regions, in sequence, representing four processes, namely hardening, dynamic recovery (DRV), dynamic strain induced transformation (DSIT), and dynamic recrystallization (DRX), according to the inflection points in ∂θ/∂σ∂θ/∂σ and ∂(∂θ/∂σ)/∂σ∂(∂θ/∂σ)/∂σ curves. Some of the inflection points have their own meanings. For examples, the minimum of ∂θ/∂σ∂θ/∂σ locates the start of DRV and the maximum of it indicates the start of DRX. The results also showed that the critical strain of DRX was sensitive to ln(Z) below 40, while the critical stress of DRX was sensitive to it above 40. The final microstructures under different deformation conditions were analyzed in terms of softening processes including DRV, DRX, metadynamic crystallization (MDRX) and DSIT.
Resumo:
A Fe-8.46%Mn-0.24%Nb-0.038%C (wt.%) manganese steel was investigated. The steel has a 100% bcc structure after heat treatment at 850°C for 1.5 h, water quenching or air cooling. Martensite interlocked microstructure consisting of fine martensite plates/needles with different spatial orientations was found. Austenite forms, in small amounts, after a 600°C reheating treatment. Scanning electron microscopy images and energy dispersive spectrometry of the fracture surfaces revealed both ductile and brittle types of failure and precipitates. Deep quenching after the heat treatments does not change the phase composition or the hardness. NbC is formed in the steel, in high number densities. It plays a role in the impact fracture process, by acting as void nucleation sites, facilitating ductile fracture with dimples appearing on the fracture surface.
Resumo:
An improved dual-gas quasi-phase matching (QPM) foil target for high harmonic generation (HHG) is presented. The target can be setup with 12 individual gas inlets each feeding multiple nozzles separated by a minimum distance of 10 μm. Three-dimensional gas density profiles of these jets were measured using a Mach-Zehnder Interferometer. These measurements reveal how the jets influence the density of gas in adjacent jets and how this leads to increased local gas densities. The analysis shows that the gas profiles of the jets are well defined up to a distance of about 300 μm from the orifice. This target design offers experimental flexibility, not only for HHG/QPM investigations, but also for a wide range of experiments due to the large number of possible jet configurations. We demonstrate the application to controlled phase tuning in the extreme ultraviolet using a 1 kHz-10 mJ-30 fs-laser system where interference between two jets in the spectral range from 17 to 30 nm was observed.
Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging
Resumo:
The China Low Activation Martensitic (CLAM) steel has been developed as a candidate structural material for future fusion reactors. It is essential to investigate the evolution of microstructure and changes of mechanical properties of CLAM steel during thermal exposure. In this study, the long-term thermal aging of the CLAM steel has been carried out in air at 600 °C and 650 °C for 1100 h, 3000 h and 5000 h. The microstructural evolution with aging time was studied, including characteristics of the growth of M23C6 carbides and the formation of Laves-phase precipitates as well as the evolved subgrains. The microstructural evolution leads to the changes of mechanical properties of the CLAM steel. The Ductile–Brittle Transition Temperature (DBTT) increases significantly during the thermal aging, which is related to the formation of Laves-phase in the steel matrix. The possible mechanism of stabilizing microstructure during the thermal exposure has been analyzed based on the interaction between M23C6 carbides and subgrain boundaries.
Resumo:
We analyze the performance of amplify-and-forward dual-hop relaying systems in the presence of in-phase and quadrature-phase imbalance (IQI) at the relay node. In particular, an exact analytical expression for and tight lower bounds on the outage probability are derived over independent, non-identically distributed Nakagami-m fading channels. Moreover, tractable upper and lower bounds on the ergodic capacity are presented at arbitrary signal-to-noise ratios (SNRs). Some special cases of practical interest (e.g., Rayleigh and Nakagami-0.5 fading) are also studied. An asymptotic analysis is performed in the high SNR regime, where we observe that IQI results in a ceiling effect on the signal-to-interference-plus-noise ratio (SINR), which depends only on the level of I/Q impairments, i.e., the joint image rejection ratio. Finally, the optimal I/Q amplitude and phase mismatch parameters are provided for maximizing the SINR ceiling, thus improving the system performance. An interesting observation is that, under a fixed total phase mismatch constraint, it is optimal to have the same level of transmitter (TX) and receiver (RX) phase mismatch at the relay node, while the optimal values for the TX and RX amplitude mismatch should be inversely proportional to each other.