37 resultados para Discrete Mathematics Learning
Resumo:
This paper presents a new algorithm for learning the structure of a special type of Bayesian network. The conditional phase-type (C-Ph) distribution is a Bayesian network that models the probabilistic causal relationships between a skewed continuous variable, modelled by the Coxian phase-type distribution, a special type of Markov model, and a set of interacting discrete variables. The algorithm takes a dataset as input and produces the structure, parameters and graphical representations of the fit of the C-Ph distribution as output.The algorithm, which uses a greedy-search technique and has been implemented in MATLAB, is evaluated using a simulated data set consisting of 20,000 cases. The results show that the original C-Ph distribution is recaptured and the fit of the network to the data is discussed.
Resumo:
Cooperative learning can actively engage students in school science, stimulating curiosity and improving attitudes and motivation. Allen Thurston discusses the roles teachers and students can play to maximize its potential.
Resumo:
Policymakers have largely replaced Single Bounded Discrete Choice (SBDC) valuation by the more statistically efficient repetitive methods; Double Bounded Discrete Choice (DBDC) and Discrete Choice Experiments (DCE) . Repetitive valuation permits classification into rational preferences: (i) a priori well-formed; (ii) consistent non-arbitrary values “discovered” through repetition and experience; (Plott, 1996; List 2003) and irrational preferences; (iii) consistent but arbitrary values as “shaped” by preceding bid level (Tufano, 2010; Ariely et al., 2003) and (iv) inconsistent and arbitrary values. Policy valuations should demonstrate behaviorally rational preferences. We outline novel methods for testing this in DBDC applied to renewable energy premiums in Chile.