181 resultados para Direct Immersion
Resumo:
Computionally efficient sequential learning algorithms are developed for direct-link resource-allocating networks (DRANs). These are achieved by decomposing existing recursive training algorithms on a layer by layer and neuron by neuron basis. This allows network weights to be updated in an efficient parallel manner and facilitates the implementation of minimal update extensions that yield a significant reduction in computation load per iteration compared to existing sequential learning methods employed in resource-allocation network (RAN) and minimal RAN (MRAN) approaches. The new algorithms, which also incorporate a pruning strategy to control network growth, are evaluated on three different system identification benchmark problems and shown to outperform existing methods both in terms of training error convergence and computational efficiency. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Obestatin is a recently discovered peptide hormone that appears to be involved in reducing food intake, gut motility and body weight. Obestatin is a product of the preproghrelin gene and appears to oppose several physiological actions of ghrelin. This study investigated the acute effects of obestatin (1-23) and the truncated form, obestatin (11-23), on feeding activity, glucose homeostasis or insulin secretion. Mice received either intraperitoneal obestatin (1-23) or (11-23) (1 mu mol/kg) 4 h prior to an allowed 15 min period of feeding. Glucose excursions and insulin responses were lowered by 64-77% and 39-41%, respectively, compared with saline controls. However this was accompanied by 43% and 53% reductions in food intake, respectively. The effects of obestatin peptides were examined under either basal or glucose (18 mmol/kg) challenge conditions to establish whether effects were independent of changes in feeding. No alterations in plasma glucose or insulin responses were observed. In addition, obestatin peptides had no effect on insulin sensitivity as revealed by hypoglycaemic response when co-administered with insulin. Our observations support a role for obestatin in regulating metabolism through changes of appetite, but indicate no direct actions on glucose homeostasis or insulin secretion. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Catalytic systems for the direct production of hydrogen peroxide from hydrogen and oxygen are investigated, and the factors which make a successful process identified. The use of low metal loadings, an organic co-solvent (such as ethanol) and reduced palladium as the catalytic metal all lead to good activity and selectivity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The characterization of a direct current, low-pressure, and high-density reflex discharge plasma source operating in argon and in nitrogen, over a range of pressures 1.0-10(-2) mbar, discharge currents 20-200 mA, and magnetic fields 0-120 G, and its parametric characterization is presented. Both external parameters, such as the breakdown potential and the discharge voltage-current characteristic, and internal parameters, like the charge carrier's temperature and density, plasma potential, floating potential, and electron energy distribution function, were measured. The electron energy distribution functions are bi-Maxwellian, but some structure is observed in these functions in nitrogen plasmas. There is experimental evidence for the existence of three groups of electrons within this reflex discharge plasma. Due to the enhanced hollow cathode effect by the magnetic trapping of electrons, the density of the cold group of electrons is as high as 10(18) m(-3), and the temperature is as low as a few tenths of an electron volt. The bulk plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of electric field. (C) 2002 American Institute of Physics.
Resumo:
A new type of direct current, high-density, and low electron temperature reflex plasma source, obtained as a hybrid between a modified hollow-cathode discharge and a Penning ionization gauge discharge is presented. The plasma source was tested in argon, nitrogen, and oxygen over a range pressure of 1.0-10(-3) mbar, discharge currents 20-200 mA, and magnetic field 0-120 Gauss. Both external parameters, such as breakdown potential and the discharge voltage-current characteristic, and its internal parameters, like the electron energy distribution function, electron and ion densities, and electron temperature, were measured. Due to the enhanced hollow-cathode effect by the magnetic trapping of electrons, the density of the bulk plasma is as high as 10(18) m(-3), and the electron temperature is as low as a few tenths of electron volts. The plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of an electric field. (C) 2004 American Institute of Physics.
Resumo:
The tendency for contractions of muscles in the upper limb to give rise to increases in the excitability of corticospinal projections to the homologous muscles of the opposite limb is well known. Although the suppression of this tendency is integral to tasks of daily living, its exploitation may prove to be critical in the rehabilitation of acquired hemiplegias. Transcranial direct current (DC) stimulation induces changes in cortical excitability that outlast the period of application. We present evidence that changes in the reactivity of the corticospinal pathway induced by DC stimulation of the motor cortex interact systematically with those brought about by contraction of the muscles of the ipsilateral limb. During the application of flexion torques (up to 50% of maximum) applied at the left wrist, motor evoked potentials (MEPs) were evoked in the quiescent muscles of the right arm by magnetic stimulation of the left motor cortex (M1). The MEPs were obtained prior to and following 10 min of anodal, cathodal or sham DC stimulation of left M1. Cathodal stimulation counteracted increases in the crossed-facilitation of projections to the (right) wrist flexors that otherwise occurred as a result of repeated flexion contractions at the left wrist. In addition, cathodal stimulation markedly decreased the excitability of corticospinal projections to the wrist extensors of the right limb. Thus changes in corticospinal excitability induced by DC stimulation can be shaped (i.e. differentiated by muscle group) by focal contractions of muscles in the limb ipsilateral to the site of stimulation. (C) 2008 Elsevier Ireland Ltd. All rights reserved.