119 resultados para Diabète type II
Resumo:
To compare platelet plasminogen activator inhibitor 1 (PAI-1) concentration in type II diabetic patients and healthy control subjects.
Resumo:
We present ultraviolet, optical, near-infrared photometry and spectroscopy of SN 2009N in NGC 4487. This object is a Type II-P supernova with spectra resembling those of subluminous II-P supernovae, while its bolometric luminosity is similar to that of the intermediate-luminosity SN 2008in. We created SYNOW models of the plateau phase spectra for line identification and to measure the expansion velocity. In the near-infrared spectra we find signs indicating possible weak interaction between the supernova ejecta and the pre-existing circumstellar material. These signs are also present in the previously unpublished near-infrared spectra of SN 2008in. The distance to SN 2009N is determined via the expanding photosphere method and the standard candle method as D = 21.6 ± 1.1 Mpc. The produced nickel-mass is estimated to be ∼0.020 ± 0.004 M⊙. We infer the physical properties of the progenitor at the explosion through hydrodynamical modelling of the observables. We find the values of the total energy as ∼0.48 × 1051 erg, the ejected mass as ∼11.5 M⊙, and the initial radius as ∼287 R⊙.
Resumo:
Membranoproliferative glomerulonephritis type II (MPGN II) is characterised by electron-dense deposits of complement components in the glomerular basement membrane and retinal pigment epithelium. Approximately, 10% of affected individuals develop serious ocular complications similar to age-related macular degeneration such as choroidal neovascularisation (CNV), which has been managed with photocoagulation or photodynamic therapy; however, these treatments can impact visual acuity. We report the case of a 42-year-old woman with MPGN II presenting with decreased visual acuity and paracentral scotoma in her left eye due to an extrafoveal choroidal neovascular membrane (growth of new vessels under the retina). The patient was successfully treated with intravitreal ranibizumab (Lucentis) with restoration of visual function. This case highlights the successful management of CNV secondary to MPGN II with the antivascular endothelial growth factor agent ranibizumab and emphasises the importance of early referral of patients with MPGN II who are reporting of visual 'distortion'.
Resumo:
We present optical and near-infrared photometry and spectroscopy of SN 2009ib, a Type II-P supernova in NGC 1559. This object has moderate brightness, similar to those of the intermediate-luminosity SNe 2008in and 2009N. Its plateau phase is unusually long, lasting for about 130 d after explosion. The spectra are similar to those of the subluminous SN 2002gd, with moderate expansion velocities. We estimate the Ni-56 mass produced as 0.046 +/- A 0.015 M-aS (TM). We determine the distance to SN 2009ib using both the expanding photosphere method (EPM) and the standard candle method. We also apply EPM to SN 1986L, a Type II-P SN that exploded in the same galaxy. Combining the results of different methods, we conclude the distance to NGC 1559 as D = 19.8 +/- A 3.0 Mpc. We examine archival, pre-explosion images of the field taken with the Hubble Space Telescope, and find a faint source at the position of the SN, which has a yellow colour [(V - I)(0) = 0.85 mag]. Assuming it is a single star, we estimate its initial mass as M-ZAMS = 20 M-aS (TM). We also examine the possibility, that instead of the yellow source the progenitor of SN 2009ib is a red supergiant star too faint to be detected. In this case, we estimate the upper limit for the initial zero-age main sequence (ZAMS) mass of the progenitor to be similar to 14-17 M-aS (TM). In addition, we infer the physical properties of the progenitor at the explosion via hydrodynamical modelling of the observables, and estimate the total energy as similar to 0.55 x 10(51) erg, the pre-explosion radius as similar to 400 R-aS (TM), and the ejected envelope mass as similar to 15 M-aS (TM), which implies that the mass of the progenitor before explosion was similar to 16.5-17 M-aS (TM).
Resumo:
We present a study of the nebular phase spectra of a sample of Type II-Plateau supernovae with identified progenitors or restrictive limits. The evolution of line fluxes, shapes and velocities is compared within the sample, and interpreted by the use of a spectral synthesis code. The small diversity within the data set can be explained by strong mixing occurring during the explosion, and by recognizing that most lines have significant contributions from primordial metals in the H envelope, which dominates the total ejecta mass in these types of objects. In particular, when using the [O I] 6300, 6364 Å doublet for estimating the core mass of the star, care has to be taken to account for emission from primordial O in the envelope. Finally, a correlation between the Hα line width and the mass of 56Ni is presented, suggesting that higher energy explosions are associated with higher 56Ni production.
Resumo:
We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P.
Resumo:
We present optical imaging and spectroscopy of supernova (SN) LSQ13fn, a type II supernova with several hitherto-unseen properties. Although it initially showed strong symmetric spectral emission features attributable to He ii, N iii, and C iii, reminiscent of some interacting SNe, it transitioned into an object that would fall more naturally under a type II-Plateau (IIP) classification. However, its spectral evolution revealed several unusual properties: metal lines appeared later than expected, were weak, and some species were conspicuous by their absence. Furthermore, the line velocities were found to be lower than expected given the plateau brightness, breaking the SN IIP standardised candle method for distance estimates. We found that, in combination with a short phase of early-time ejecta-circumstellar material interaction, metal-poor ejecta, and a large progenitor radius could reasonably account for the observed behaviour. Comparisons with synthetic model spectra of SNe IIP of a given progenitor mass would imply a progenitor star metallicity as low as 0.1 Z⊙. LSQ13fn highlights the diversity of SNe II and the many competing physical effects that come into play towards the final stages of massive star evolution immediately preceding core-collapse.
Resumo:
Based on optical imaging and spectroscopy of the Type II-Plateau SN 2013eq, we present a comparative study of commonly used distance determination methods based on Type II supernovae. The occurrence of SN 2013eq in the Hubble flow (z = 0.041 ± 0.001) prompted us to investigate the implications of the difference between "angular" and "luminosity" distances within the framework of the expanding photosphere method (EPM) that relies upon a relation between flux and angular size to yield a distance. Following a re-derivation of the basic equations of the EPM for SNe at non-negligible redshifts, we conclude that the EPM results in an angular distance. The observed flux should be converted into the SN rest frame and the angular size, θ, has to be corrected by a factor of (1 + z)2. Alternatively, the EPM angular distance can be converted to a luminosity distance by implementing a modification of the angular size. For SN 2013eq, we find EPM luminosity distances of DL = 151 ± 18 Mpc and DL = 164 ± 20 Mpc by making use of different sets of dilution factors taken from the literature. Application of the standardized candle method for Type II-P SNe results in an independent luminosity distance estimate (DL = 168 ± 16 Mpc) that is consistent with the EPM estimate. Spectra of SN 2013eq are available in the Weizmann Interactive Supernova data REPository (WISeREP): http://wiserep.weizmann.ac.il
The death of massive stars - II. Observational constraints on the progenitors of Type Ibc supernovae
Resumo:
The progenitors of many Type II core-collapse supernovae (SNe) have now been identified directly on pre-discovery imaging. Here, we present an extensive search for the progenitors of Type Ibc SNe in all available pre-discovery imaging since 1998. There are 12 Type Ibc SNe with no detections of progenitors in either deep ground-based or Hubble Space Telescope archival imaging. The deepest absolute BVR magnitude limits are between -4 and - 5 mag. We compare these limits with the observed Wolf-Rayet population in the Large Magellanic Cloud and estimate a 16 per cent probability that we have failed to detect such a progenitor by chance. Alternatively, the progenitors evolve significantly before core-collapse or we have underestimated the extinction towards the progenitors. Reviewing the relative rates and ejecta mass estimates from light-curve modelling of Ibc SNe, we find both incompatible with Wolf-Rayet stars with initial masses >25 M⊙ being the only progenitors. We present binary evolution models that fit these observational constraints. Stars in binaries with initial masses ≲ 20 M⊙ lose their hydrogen envelopes in binary interactions to become low-mass helium stars. They retain a low-mass hydrogen envelope until ≈104 yr before core-collapse; hence, it is not surprising that Galactic analogues have been difficult to identify.
Resumo:
The main hallmark of diabetic nephropathy is elevation in urinary albumin excretion. We performed a genome-wide linkage scan in 63 extended families with multiple members with type II diabetes. Urinary albumin excretion, measured as the albumin-to-creatinine ratio (ACR), was determined in 426 diabetic and 431 nondiabetic relatives who were genotyped for 383 markers. The data were analyzed using variance components linkage analysis. Heritability (h2) of ACR was significant in diabetic (h2=0.23, P=0.0007), and nondiabetic (h2=0.39, P=0.0001) relatives. There was no significant difference in genetic variance of ACR between diabetic and nondiabetic relatives (P=0.16), and the genetic correlation (rG=0.64) for ACR between these two groups was not different from 1 (P=0.12). These results suggested that similar genes contribute to variation in ACR in diabetic and nondiabetic relatives. This hypothesis was supported further by the linkage results.
Resumo:
We have developed a novel Multilocus Sequence Typing Scheme (MLST) and database (http://pubmlst.org/pacnes/) for Propionibacterium acnes based on the analysis of seven core housekeeping genes. The scheme, which was validated against previously described antibody, single locus and Random Amplification of Polymorphic DNA (RAPD) typing methods, displayed excellent resolution and differentiated 123 isolates into 37 sequence types (ST). An overall clonal population structure was detected with six eBURST groups representing the major clades I, II and III, along with two singletons. Two highly successful and global clonal lineages, ST6 (type IA) and ST10 (type IB1), representing 65% of this current MLST isolate collection were identified. The ST6 clone and closely related single locus variants (SLV), which comprise a large clonal complex CC6, dominated isolates from patients with acne, and were also significantly associated with ophthalmic infections. Our data therefore supports an association between acne and P. acnes strains from the type IA cluster and highlights the role of a widely disseminated clonal genotype in this condition. Characterisation of type I cell surface-associated antigens that are not detected in ST10 or strains of type II and III identified two dermatan-sulphate-binding proteins with putative phase/antigenic variation signatures. We propose that the expression of these proteins by type IA organisms contributes to their role in the pathophysiology of acne and helps explain the recurrent nature of the disease. The MLST scheme and database described in this study should provide a valuable platform for future epidemiological and evolutionary studies of P. acnes.
Resumo:
We present the results of the one-year long observational campaign of the type 11 plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool galaxy). This extensive data set makes SN 2005cs the best observed low-luminosity, Ni-56-poor type II plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km s(-1)) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 d after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 cl. In addition to optical observations, we also present near-infrared light curves that (together with already published ultraviolet observations) allow us to construct for the first time a reliable bolometric light Curve for an object of this class. Finally. comparing the observed data withthose derived front it semi-analytic model, we infer for SN 2005cs a Ni-56 mass of about 3 x 10(-3) M-circle dot a total ejected mass of 8-13 M-circle dot and an explosion energy of about 3 x 10(50) erg.
Resumo:
Type II DNA topoisomerases catalyse DNA double-strand cleavage, passage and re-ligation to effect topological changes. There is considerable interest in elucidating topoisomerase II roles, particularly as these proteins are targets for anti-cancer drugs. Here we uncover a role for topoisomerase IIa in RNA polymerase I-directed ribosomal RNA gene transcription, which drives cell growth and proliferation and is upregulated in cancer cells. Our data suggest that topoisomerase IIa is a component of the initiation-competent RNA polymerase Iß complex and interacts directly with RNA polymerase I-associated transcription factor RRN3, which targets the polymerase to promoter-bound SL1 in pre-initiation complex formation. In cells, activation of rDNA transcription is reduced by inhibition or depletion of topoisomerase II, and this is accompanied by reduced transient double-strand DNA cleavage in the rDNA-promoter region and reduced pre-initiation complex formation. We propose that topoisomerase IIa functions in RNA polymerase I transcription to produce topological changes at the rDNA promoter that facilitate efficient de novo pre-initiation complex formation.
Resumo:
We present new data for five underluminous Type II-plateau supernovae (SNe IIP), namely SN 1999gn, SN 2002gd, SN 2003Z, SN 2004eg and SN 2006ov. This new sample of lowluminosity SNe IIP (LL SNe IIP) is analysed together with similar objects studied in the past. All of them show a flat light-curve plateau lasting about 100 d, an underluminous late-time exponential tail, intrinsic colours that are unusually red, and spectra showing prominent and narrow P Cygni lines. A velocity of the ejected material below 103 km s-1 is inferred from measurements at the end of the plateau. The 56Ni masses ejected in the explosion are very small (≤10-2 M⊙). We investigate the correlations among 56Ni mass, expansion velocity of the ejecta and absolute magnitude in the middle of the plateau, confirming the main findings of Hamuy, according to which events showing brighter plateau and larger expansion velocities are expected to produce more 56Ni. We propose that these faint objects represent the LL tail of a continuous distribution in parameters space of SNe IIP. The physical properties of the progenitors at the explosion are estimated through the hydrodynamical modelling of the observables for two representative events of this class, namely SN 2005cs and SN 2008in. We find that the majority of LL SNe IIP, and quite possibly all, originate in the core collapse of intermediate-mass stars, in the mass range 10-15 M⊙.
Resumo:
On 2011 May 31 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras and also detected it with the Palomar Transient Factory survey, rapidly confirming it to be a Type II SN. Here, we present multi-color ultraviolet through infrared photometry which is used to calculate the bolometric luminosity and a series of spectra. Our early-time observations indicate that SN 2011dh resulted from the explosion of a relatively compact progenitor star. Rapid shock-breakout cooling leads to relatively low temperatures in early-time spectra, compared to explosions of red supergiant stars, as well as a rapid early light curve decline. Optical spectra of SN 2011dh are dominated by H lines out to day 10 after explosion, after which He I lines develop. This SN is likely a member of the cIIb (compact IIb) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~1013 cm) would be highly inconsistent with constraints from our post-explosion spectra.