66 resultados para Detection sensitivity
Resumo:
The design of a 5' conjugated minor groove binder (MGB) probe real-time PCR assay is described for the rapid, sensitive and specific detection of African swine fever virus (ASFV) DNA. The assay is designed against the 9GL region and is capable of detecting 20 copies of a DNA standard. It does not detect any of the other common swine DNA viruses tested in this study. The assay can detect ASFV DNA in a range of clinical samples. Sensitivity was equivalent to the Office International des Epizooties (OIE) recommended TaqMan assay. In addition the assay was found to have a detection limit 10-fold more sensitive than the conventional PCR recommended by the OIE. Linear range was ten logs from 2 x 10(1) to 2 x 10(10). The assay is rapid with an amplification time just over 2 h. The development of this assay provides a useful tool for the specific diagnosis of ASF in statutory or emergency testing programs or for the detection of ASFV DNA in research applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the main parameters - contrast, spatial resolution, and thermal sensitivity - which define the performance of any stand-off imaging system. The origin of the signature for both metal and dielectric objects hidden under clothing in the frequency range from 100 GHz to 500 GHz is discussed. At 100 GHz the signature is dominated by reflection whilst at 500 GHz it is dominated by emission. A 94-GHz-passive millimetre-wave imaging system has been designed and fabricated to image objects under clothing. This imager is based on a Schmidt camera folded using polarisation techniques.
Resumo:
Circulating antigliadin antibody has been described in patients with gluten enteropathy although the prevalence varies in different studies. It has been suggested that the investigation for antigliadin antibody might be useful as a screening test. The object of the present study was to evaluate two different techniques for assaying these antibodies - an indirect immunofluorescent method and an enzyme-linked immunosorbent assay (ELISA). Antibodies were assayed in the sera of 102 patients in whom jejunal biopsies were also obtained. The specificity of both tests was greater than 95%, and the correlation between the presence of antibody and histology was significant (p <0.005), though the sensitivity of each test was less than 70%.
Resumo:
The limitations of classical diagnostic methods for invasive Candida infections have led to the development of molecular techniques such as real-time PCR to improve diagnosis. However, the detection of low titres of Candida DNA in blood from patients with candidaemia requires the use of extraction methods that efficiently lyse yeast cells and recover small amounts of DNA suitable for amplification. In this study, a Candida-specific real-time PCR assay was used to detect Candida albicans DNA in inoculated whole blood specimens extracted using seven different extraction protocols. The yield and quality of total nucleic acids were estimated using UV absorbance, and specific recovery of C. albicans genomic DNA was estimated quantitatively in comparison with a reference (Qiagen kit/lyticase) method currently in use in our laboratory. The extraction protocols were also compared with respect to sensitivity, cost and time required for completion. The TaqMan PCR assay used to amplify the DNA extracts achieved high levels of specificity, sensitivity and reproducibility. Of the seven extraction protocols evaluated, only the MasterPure yeast DNA extraction reagent kit gave significantly higher total nucleic acid yields than the reference method, although nucleic acid purity was highest using either the reference or YeaStar genomic DNA kit methods. More importantly, the YeaStar method enabled C. albicans DNA to be detected with highest sensitivity over the entire range of copy numbers evaluated, and appears to be an optimal method for extracting Candida DNA from whole blood.
Resumo:
3-amino-2-oxazolidinone (AOZ) is a tissue bound toxic metabolite derived from the nitrofuran antibiotic, furazolidone. AOZ is detected in the derivatised form of 3-{[(2-nitrophenyl) methylene]amino}-2-oxazolidinone (NP AOZ). 3-{[( 3- carboxyphenyl)-methylene]amino-2-oxazolidinone (CP AOZ) was used as the immunising hapten for the production of monoclonal antibodies against NP AOZ. Monoclonal antibodies were produced using hybridomas from the fusion of murine myeloma cells and spleen cells isolated from BALB/c mice immunised with CP AOZ-ethylenediamine-human serum albumin (CP AOZ-ed-HSA). The antibody production in ascitic fluids from clones 3B8/2B9 and 2D11/A4 was monitored during a 16 month period. Repeated cultures of these hybridomas, followed by injection into mice and cloning did not change the assay parameters. Clone 2D11/A4 exhibited long term stability in antibody production throughout the experiment whereas clone 3B8/2B9 demonstrated variability in particular antibody yields whilst retaining assay sensitivity. Reasons for this production variability in clones are discussed. In an optimised direct ELISA format, the antibodies exhibited a 50% binding inhibition in the range of 0.52-1.15 ng/ml with NP AOZ (0.22-0.50 ng/ml, respective AOZ equivalents) and showed high specificity towards this analyte. The sensitivity of monoclonal antibodies incorporated into the ELISA is compatible with the European Union MRLP and is currently in use for routine analysis.
Resumo:
Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection. © 2013 Charlermroj et al.
Resumo:
Unregulated growth promoter use in food-producing animals is an issue of concern both from food safety and animal welfare perspectives. However, the monitoring of such practices is analytically challenging due to the concerted actions of users to evade detection. Techniques based on the monitoring of biological responses to exogenous administrations have been proposed as more sensitive methods to identify treated animals. This study has, for the first time, profiled plasma proteome responses in bovine animals to treatment with nortestosterone decanoate and 17 beta-oestradiol benzoate, followed by dexamethasone administration. Two-dimensional fluorescence differential in-gel electrophoresis analysis revealed a series of hepatic and acute-phase proteins within plasma whose levels were up- or down-regulated within phases of the treatment regime. Surface plasmon resonance (SPR) immuno-assays were developed to quantify responses of identified protein markers during the experimental treatment study with a view to developing methods which can be used as screening tools for growth promoter abuse detection. SPR analysis demonstrated the potential for plasma proteins to be used as indicative measures of growth promoter administrations and concludes that the sensitivity and robustness of any detection approach based on plasma proteome analysis would benefit from examination of a range of proteins representative of diverse biological processes rather being reliant on specific individual markers.
Resumo:
We report observations of the dwarf star e Eri (K2V) made with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. The high sensitivity of the STIS instrument has allowed us to detect the magnetic dipole transitions of Fe XII at 1242.00 and 1349 38 Å for the first time in a star other than the Sun. The width of the stronger line at 1242.00 Å has also been measured; such measurements are not possible for the permitted lines of Fe XII in the extreme-ultraviolet. To within the accuracy of the measurements the N v and the Fe XII lines occur at their rest wavelengths. Electron densities and linewidths have been measured from other transition region lines. Together, these can be used to investigate the non-thermal energy flux in the lower and upper transition regions, which is useful in constraining possible heating processes. The Fe XII lines are also present in archival STIS spectra of other G/K-type dwarfs.
Resumo:
Conflicting results have been reported on the detection of paramyxovirus transcripts in Paget's disease, and a possible explanation is differences in the sensitivity of RT-PCR methods for detecting virus. In a blinded study, we found no evidence to suggest that laboratories that failed to detect viral transcripts had less sensitive RT-PCR assays, and we did not detect measles or distemper transcripts in Paget's samples using the most sensitive assays evaluated.
Introduction: There is conflicting evidence on the possible role of persistent paramyxovirus infection in Paget's disease of bone (PDB). Some workers have detected measles virus (MV) or canine distemper virus (CDV) transcripts in cells and tissues from patients with PDB, but others have failed to confirm this finding. A possible explanation might be differences in the sensitivity of RT-PCR methods for detecting virus. Here we performed a blinded comparison of the sensitivity of different RT-PCR-based techniques for MV and CDV detection in different laboratories and used the most sensitive assays to screen for evidence of viral transcripts in bone and blood samples derived from patients with PDB.
Materials and Methods: Participating laboratories analyzed samples spiked with known amounts of MV and CDV transcripts and control samples that did not contain viral nucleic acids. All analyses were performed on a blinded basis.
Results: The limit of detection for CDV was 1000 viral transcripts in three laboratories (Aberdeen, Belfast, and Liverpool) and 10,000 transcripts in another laboratory (Manchester). The limit of detection for MV was 16 transcripts in one laboratory (NIBSC), 1000 transcripts in two laboratories (Aberdeen and Belfast), and 10,000 transcripts in two laboratories (Liverpool and Manchester). An assay previously used by a U.S.-based group to detect MV transcripts in PDB had a sensitivity of 1000 transcripts. One laboratory (Manchester) detected CDV transcripts in a negative control and in two samples that had been spiked with MV. None of the other laboratories had false-positive results for MV or CDV, and no evidence of viral transcripts was found on analysis of 12 PDB samples using the most sensitive RT-PCR assays for MV and CDV.
Conclusions: We found that RT-PCR assays used by different laboratories differed in their sensitivity to detect CDV and MV transcripts but found no evidence to suggest that laboratories that previously failed to detect viral transcripts had less sensitive RT-PCR assays than those that detected viral transcripts. False-positive results were observed with one laboratory, and we failed to detect paramyxovirus transcripts in PDB samples using the most sensitive assays evaluated. Our results show that failure of some laboratories to detect viral transcripts is unlikely to be caused by problems with assay sensitivity and highlight the fact that contamination can be an issue when searching for pathogens by sensitive RT-PCR-based techniques.
Resumo:
BACKGROUND: To compare the ability of Glaucoma Progression Analysis (GPA) and Threshold Noiseless Trend (TNT) programs to detect visual-field deterioration.
METHODS: Patients with open-angle glaucoma followed for a minimum of 2 years and a minimum of seven reliable visual fields were included. Progression was assessed subjectively by four masked glaucoma experts, and compared with GPA and TNT results. Each case was judged to be stable, deteriorated or suspicious of deterioration
RESULTS: A total of 56 eyes of 42 patients were followed with a mean of 7.8 (SD 1.0) tests over an average of 5.5 (1.04) years. Interobserver agreement to detect progression was good (mean kappa = 0.57). Progression was detected in 10-19 eyes by the experts, in six by GPA and in 24 by TNT. Using the consensus expert opinion as the gold standard (four clinicians detected progression), the GPA sensitivity and specificity were 75% and 83%, respectively, while the TNT sensitivity and specificity was 100% and 77%, respectively.
CONCLUSION: TNT showed greater concordance with the experts than GPA in the detection of visual-field deterioration. GPA showed a high specificity but lower sensitivity, mainly detecting cases of high focality and pronounced mean defect slopes.
Resumo:
Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody–antigen interaction and the localized surface plasmon resonance (LSPR) ?max shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS(CH2)11(OCH2CH2)6OCH2COOH(OEG6) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA) as a protein biomarker, the lowest concentration experimentally detected was as low as 111 aM, corresponding to a 2.79 nm LSPR ?max shift. These results indicate that the detection platform is very sensitive and outperforms detection limits of commercial tests for PSA so far. Correlatively, its detection limit can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple, label-free detection with ultrahigh sensitivity.
Resumo:
A mechanism of dual enlargement of gold nanoparticles (AuNPs) comprising two steps is described. In the first step, the AuNPs are enlarged by depositing Au atoms on their crystalline faces. In this process, the particles are not only enlarged but they are also observed to multiply: new Au nuclei are formed by the budding and division of the enlarged particles. In the second step, a silver enhancement is subsequently performed by the deposition of silver atoms on the enlarged and newly formed AuNPs to generate bimetallic Au@Ag core-shell structures. The dual nanocatalysis greatly enhances the electron density of the nanostructures, leading to a stronger intensity for colorimetric discrimination as well as better sensitivity for quantitative measurement. Based on this, a simple scanometric assay for the on-slide detection of the food-born pathogen Campylobacter jejuni is developed. After capturing the target bacteria, gold-tagged immunoprobes are added to create a signal on a solid substrate. The signal is then amplified by the dual enlargement process, resulting in a strong color intensity that can easily be recognized by the unaided eye, or measured by an inexpensive flatbed scanner. In this paper, dual nanocatalysis is reported for the first time. It provides a valuable mechanistic insight into the development of a simple and cost-effective detection format.
Resumo:
Quantitative detection of specific viral DNA has become a pressing issue for the earlier clinical diagnosis of viral infectious diseases. Therefore, in this paper, we report a simple, sensitive, and inexpensive quantitative approach for DNA detection based on the autocatalytic Au deposition of gold nanoprobes via the surface reduction of AuCl4- to Au0 on their surface in the presence of ascorbic acid (AA) and cetyltrimethylammonium bromide (CTAB). On this basis, signal enhancements in the absorbance intensity and kinetic behavior of gold enlargement in the aqueous phase have been well investigated and explained for the selection of analytical parameters. To achieve high sensitivity, magnetic particles conjugated with capture probes (PMPs) were employed for the collection of gold nanoprobes. After denaturated by ion a pH 11 solution, the amplified signals of gold nanoprobes, which is proportional to the concentration of the target DNA, could easily be confirmed by a UV-vis scanning spectrophotometer. Limit of detection could be obtained as low as 1.0 fM by this simple method.
Resumo:
This paper considers the enhancement of loss-of-mains detection by use of a differential rate-of-change-of-frequency relay to reduce nuisance tripping and improve sensitivity to small excursions in frequency. The telecommunications media which might carry the differential ROCOF signal are reviewed with a focus on channel latency, bandwidth and security.
Resumo:
Aims
Our aim was to test the prediction and clinical applicability of high-sensitivity assayed troponin I for incident cardiovascular events in a general middle-aged European population.
Methods and results
High-sensitivity assayed troponin I was measured in the Scottish Heart Health Extended Cohort (n = 15 340) with 2171 cardiovascular events (including acute coronary heart disease and probable ischaemic strokes), 714 coronary deaths (25% of all deaths), 1980 myocardial infarctions, and 797 strokes of all kinds during an average of 20 years follow-up. Detection rate above the limit of detection (LoD) was 74.8% in the overall population and 82.6% in men and 67.0% in women. Troponin I assayed by the high-sensitivity method was associated with future cardiovascular risk after full adjustment such as that individuals in the fourth category had 2.5 times the risk compared with those without detectable troponin I (P < 0.0001). These associations remained significant even for those individuals in whom levels of contemporary-sensitivity troponin I measures were not detectable. Addition of troponin I levels to clinical variables led to significant increases in risk prediction with significant improvement of the c-statistic (P < 0.0001) and net reclassification (P < 0.0001). A threshold of 4.7 pg/mL in women and 7.0 pg/mL in men is suggested to detect individuals at high risk for future cardiovascular events.
Conclusion
Troponin I, measured with a high-sensitivity assay, is an independent predictor of cardiovascular events and might support selection of at risk individuals.