46 resultados para Darragh (Mich.)
Resumo:
The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics.
Resumo:
Polycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage. Remarkably, PCL1 has evolved a PRC2- and chromatin-independent function to negatively regulate proliferation. We show that PCL1 binds to and stabilizes p53 to induce cellular quiescence. Moreover, depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. This newly evolved function is achieved by the binding of the PCL1 N-terminal PHD domain to the C-terminal domain of p53 through two unique serine residues, which were acquired during recent vertebrate evolution. This study illustrates the functional bifurcation of PCL proteins, which act in both a chromatin-dependent and a chromatin-independent manner to regulate the INK4A and p53 pathways.
Resumo:
The last 20 years have seen significant advances in cancer care in Northern Ireland, leading to measureable improvements in patient outcomes. Crucial to this transformation has been an ethos that recognizes the primacy role of research in effecting heath care change. The authors' model of a cross-sectoral partnership that unites patients, scientists, health care professionals, hospital trusts, bioindustry, and government agencies can be truly transformative, empowering tripartite clinical-academic-industry efforts that have already yielded significant benefit and will continue to inform strategy and its implementation going forward.
Resumo:
Background: Around 10-15% of patients with locally advanced rectal cancer (LARC) undergo a pathologically complete response (TRG4) to neoadjuvant chemoradiotherapy; the rest of patients exhibit a spectrum of tumour regression (TRG1-3). Understanding therapy-related genomic alterations may help us to identify underlying biology or novel targets associated with response that could increase the efficacy of therapy in patients that do not benefit from the current standard of care.
Methods: 48 FFPE rectal cancer biopsies and matched resections were analysed using the WG-DASL HumanHT-12_v4 Beadchip array on the illumina iScan. Bioinformatic analysis was conducted in Partek genomics suite and R studio. Limma and glmnet packages were used to identify genes differentially expressed between tumour regression grades. Validation of microarray results will be carried out using IHC, RNAscope and RT-PCR.
Results: Immune response genes were observed from supervised analysis of the biopsies which may have predictive value. Differential gene expression from the resections as well as pre and post therapy analysis revealed induction of genes in a tumour regression dependent manner. Pathway mapping and Gene Ontology analysis of these genes suggested antigen processing and natural killer mediated cytotoxicity respectively. The natural killer-like gene signature was switched off in non-responders and on in the responders. IHC has confirmed the presence of Natural killer cells through CD56+ staining.
Conclusion: Identification of NK cell genes and CD56+ cells in patients responding to neoadjuvant chemoradiotherapy warrants further investigation into their association with tumour regression grade in LARC. NK cells are known to lyse malignant cells and determining whether their presence is a cause or consequence of response is crucial. Interrogation of the cytokines upregulated in our NK-like signature will help guide future in vitro models.
Molecular classification of non-invasive breast lesions for personalised therapy and chemoprevention
Resumo:
Breast cancer screening has led to a dramatic increase in the detection of pre-invasive breast lesions. While mastectomy is almost guaranteed to treat the disease, more conservative approaches could be as effective if patients can be stratified based on risk of co-existing or recurrent invasive disease.Here we use a range of biomarkers to interrogate and classify purely non-invasive lesions (PNL) and those with co-existing invasive breast cancer (CEIN). Apart from Ductal Carcinoma In Situ (DCIS), relative homogeneity is observed. DCIS contained a greater spread of molecular subtypes. Interestingly, high expression of p-mTOR was observed in all PNL with lower expression in DCIS and invasive carcinoma while the opposite expression pattern was observed for TOP2A.Comparing PNL with CEIN, we have identified p53 and Ki67 as predictors of CEIN with a combined PPV and NPV of 90.48% and 43.3% respectively. Furthermore, HER2 expression showed the best concordance between DCIS and its invasive counterpart.We propose that these biomarkers can be used to improve the management of patients with pre-invasive breast lesions following further validation and clinical trials. p53 and Ki67 could be used to stratify patients into low and high-risk groups for co-existing disease. Knowledge of expression of more actionable targets such as HER2 or TOP2A can be used to design chemoprevention or neo-adjuvant strategies. Increased knowledge of the molecular profile of pre-invasive lesions can only serve to enhance our understanding of the disease and, in the era of personalised medicine, bring us closer to improving breast cancer care.
Resumo:
Small bowel accounts for only 0.5% of cancer cases in the US but incidence rates have been rising at 2.4% per year over the past decade. One-third of these are adenocarcinomas but little is known about their molecular pathology and no molecular markers are available for clinical use. Using a retrospective 28 patient matched normal-tumor cohort, next-generation sequencing, gene expression arrays and CpG methylation arrays were used for molecular profiling. Next-generation sequencing identified novel mutations in IDH1, CDH1, KIT, FGFR2, FLT3, NPM1, PTEN, MET, AKT1, RET, NOTCH1 and ERBB4. Array data revealed 17% of CpGs and 5% of RNA transcripts assayed to be differentially methylated and expressed respectively (p < 0.01). Merging gene expression and DNA methylation data revealed CHN2 as consistently hypermethylated and downregulated in this disease (Spearman -0.71, p < 0.001). Mutations in TP53 which were found in more than half of the cohort (15/28) and Kazald1 hypomethylation were both were indicative of poor survival (p = 0.03, HR = 3.2 and p = 0.01, HR = 4.9 respectively). By integrating high-throughput mutational, gene expression and DNA methylation data, this study reveals for the first time the distinct molecular profile of small bowel adenocarcinoma and highlights potential clinically exploitable markers.
Resumo:
PURPOSE: EphA2, a member of the Eph receptor tyrosine kinases family, is an important regulator of tumor initiation, neovascularization, and metastasis in a wide range of epithelial and mesenchymal cancers; however, its role in colorectal cancer recurrence and progression is unclear.
EXPERIMENTAL DESIGN: EphA2 expression was determined by immunohistochemistry in stage II/III colorectal tumors (N = 338), and findings correlated with clinical outcome. The correlation between EphA2 expression and stem cell markers CD44 and Lgr5 was examined. The role of EphA2 in migration/invasion was assessed using a panel of KRAS wild-type (WT) and mutant (MT) parental and invasive colorectal cancer cell line models.
RESULTS: Colorectal tumors displayed significantly higher expression levels of EphA2 compared with matched normal tissue, which positively correlated with high CD44 and Lgr5 expression levels. Moreover, high EphA2 mRNA and protein expression were found to be associated with poor overall survival in stage II/III colorectal cancer tissues, in both univariate and multivariate analyses. Preclinically, we found that EphA2 was highly expressed in KRASMT colorectal cancer cells and that EphA2 levels are regulated by the KRAS-driven MAPK and RalGDS-RalA pathways. Moreover, EphA2 levels were elevated in several invasive daughter cell lines, and downregulation of EphA2 using RNAi or recombinant EFNA1 suppressed migration and invasion of KRASMT colorectal cancer cells.
CONCLUSIONS: These data show that EpHA2 is a poor prognostic marker in stage II/III colorectal cancer, which may be due to its ability to promote cell migration and invasion, providing support for the further investigation of EphA2 as a novel prognostic biomarker and therapeutic target. Clin Cancer Res; 22(1); 230-42. ©2015 AACR.
Resumo:
The treatment of cancer is becoming more precise, targeting specific oncogenic drivers with targeted molecular therapies. The epidermal growth factor receptor has been found to be over-expressed in a multitude of solid tumours. Immunohistochemistry is widely used in the fields of diagnostic and personalised medicine to localise and visualise disease specific proteins. To date the clinical utility of epidermal growth factor receptor immunohistochemistry in determining monoclonal antibody efficacy has remained somewhat inconclusive. The lack of an agreed reproducible scoring criteria for epidermal growth factor receptor immunohistochemistry has, in various clinical trials yielded conflicting results as to the use of epidermal growth factor receptor immunohistochemistry assay as a companion diagnostic. This has resulted in this test being removed from the licence for the drug panitumumab and not performed in clinical practice for cetuximab. In this review we explore the reasons behind this with a particular emphasis on colorectal cancer, and to suggest a way of resolving the situation through improving the precision of epidermal growth factor receptor immunohistochemistry with quantitative image analysis of digitised images complemented with companion molecular morphological techniques such as in situ hybridisation and section based gene mutation analysis.
Resumo:
Background: EpHA2 is a 130 kD transmembrane glycoprotein belonging to ephrin receptor subfamily and involved in angiogenesis/tumour neovascularisation. High EpHA2 mRNA level has recently been implicated in cetuximab resistance. Previously, we found high EpHA2 levels in a panel of invasive colorectal cancer (CRC) cells, which was associated with high levels of stem-cell marker CD44. Our aim was to investigate the prognostic value of EpHA2 and subsequently correlate expression levels to known clinico-pathological variables in early stage CRC. Methods: Tissue samples from 509 CRC patients were analysed. EpHA2 expression was measured using IHC. Kaplan-Meier graphs were used. Univariate and multivariate analyses employed Cox Proportional Hazards Ratio (HR) method. A backward selection method (Akaike’s information criterion) was used to determine a refined multivariate model. Results: EpHA2 was highly expressed in CRC adenocarcinoma compared to matched normal colon tissue. In support of our preclinical invasive models, strong correlation was found between EpHA2 expression and CD44 and Lgr5 staining (p<0.001). In addition, high EpHA2 expression significantly correlated with vascular invasion (p=0.03).HR for OS for stage II/III patients with high EpHA2 expression was 1.69 (95%CI: 1.164-2.439; p=0.003). When stage II/III was broken down into individual stages, there was significant correlation between high EpHA2 expression and poor 5-years OS in stage II patients (HR: 2.18; 95%CI: 1.28-3.71; p=0.005).HR in the stage III group showed a trend to statistical significance (HR: 1.48; 95%CI=0.87-2.51; p=0.05). In both univariate and multivariate analyses of stage II patients, high EpHA2 expression was the only significant factor and was retained in the final multivariate model. Higher levels of EpHA2 were noted in our RAS and BRAF mutant CRC cells, and silencing EpHA2 resulted in significant decreases in migration/invasion in parental and invasive CRC sublines. Correlation between KRAS/NRAS/BRAFmutational status and EpHA2 expression in clinical samples is ongoing. Conclusions: Taken together, our study is the first to indicate that EpHA2 expression is a predictor of poor clinical outcome and a potential novel target in early stage CRC.
Resumo:
Breast cancer is a heterogeneous disease, at both an inter- and intra-tumoural level. Appreciating heterogeneity through the application of biomarkers and molecular signatures adds complexity to tumour taxonomy but is key to personalising diagnosis, treatment and prognosis. The extent to which heterogeneity exists, and its interpretation remains a challenge to pathologists. Using HER2 as an exemplar, we have developed a simple reproducible heterogeneity index. Cell-to-cell HER2 heterogeneity was extensive in a proportion of both reported 'amplified' and 'non-amplified' cases. The highest levels of heterogeneity objectively identified occurred in borderline categories and higher ratio non-amplified cases. A case with particularly striking heterogeneity was analysed further with an array of biomarkers in order to assign a molecular diagnosis. Broad biological complexity was evident. In essence, interpretation, depending on the area of tumour sampled, could have been one of three distinct phenotypes, each of which would infer different therapeutic interventions. Therefore, we recommend that heterogeneity is assessed and taken into account when determining treatment options.
Resumo:
The Colorectal Cancer (CRC) Subtyping Consortium (CRCSC) recently published four consensus molecular subtypes (CMS’s) representing the underlying biology in CRC. The Microsatellite Instable (MSI) immune group, CMS1, has a favorable prognosis in early stage disease, but paradoxically has the worst prognosis following relapse, suggesting the presence of factors enabling neoplastic cells to circumvent this immune response. To identify the genes influencing subsequent poor prognosis in CMS1, we analyzed this subtype, centered on risk of relapse.
In a cohort of early stage colon cancer (n=460), we examined, in silico, changes in gene expression within the CMS1 subtype and demonstrated for the first time the favorable prognostic value of chemokine-like factor (CKLF) gene expression in the adjuvant disease setting [HR=0.18, CI=0.04-0.89]. In addition, using transcription profiles originating from cell sorted CRC tumors, we delineated the source of CKLF transcription within the colorectal tumor microenvironment to the leukocyte component of these tumors. Further to this, we confirmed that CKLF gene expression is confined to distinct immune subsets in whole blood samples and primary cell lines, highlighting CKLF as a potential immune cell-derived factor promoting tumor immune-surveillance of nascent neoplastic cells, particularly in CMS1 tumors. Building on the recently reported CRCSC data, we provide compelling evidence that leukocyte-infiltrate derived CKLF expression is a candidate biomarker of favorable prognosis, specifically in MSI-immune stage II/III disease.
Resumo:
Background: Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. Results: We describe QUADrATiC (http://go.qub.ac.uk/QUADrATiC), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts.Conclusions: QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than previous alternative solutions.
Resumo:
Modern approaches to biomedical research and diagnostics targeted towards precision medicine are generating ‘big data’ across a range of high-throughput experimental and analytical platforms. Integrative analysis of this rich clinical, pathological, molecular and imaging data represents one of the greatest bottlenecks in biomarker discovery research in cancer and other diseases. Following on from the publication of our successful framework for multimodal data amalgamation and integrative analysis, Pathology Integromics in Cancer (PICan), this article will explore the essential elements of assembling an integromics framework from a more detailed perspective. PICan, built around a relational database storing curated multimodal data, is the research tool sitting at the heart of our interdisciplinary efforts to streamline biomarker discovery and validation. While recognizing that every institution has a unique set of priorities and challenges, we will use our experiences with PICan as a case study and starting point, rationalizing the design choices we made within the context of our local infrastructure and specific needs, but also highlighting alternative approaches that may better suit other programmes of research and discovery. Along the way, we stress that integromics is not just a set of tools, but rather a cohesive paradigm for how modern bioinformatics can be enhanced. Successful implementation of an integromics framework is a collaborative team effort that is built with an eye to the future and greatly accelerates the processes of biomarker discovery, validation and translation into clinical practice.
Resumo:
Purpose:
A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer (CRC) with potential diagnostic utility, culminating in publication of a CRC Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal-derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled.
Experimental Design:
We performed multi-region tissue RNA extraction/transcriptomic analysis using Colorectal Specific Arrays on invasive front, central tumor and lymph node regions selected from tissue samples from 25 CRC patients.
Results:
We identified a consensus 30 gene list which represents the intratumoral heterogeneity within a cohort of primary CRC tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential (HR=2.914 (CI 0.9286-9.162) in stage II/III CRC patients, but in addition we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stem-like biology have undergone a widespread Epithelial Mesenchymal Transition (EMT). Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analysed.
Conclusions:
Gene expression profiles derived from the non-malignant stromal region can influence assignment of CRC transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision-making in CRC.