37 resultados para Damping oscillation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear wave theory models are commonly applied to predict the performance of bottom-hinged oscillating wave surge converters (OWSC) in operational sea states. To account for non-linear effects, the additional input of coefficients not included in the model itself becomes necessary. In ocean engineering it is
common practice to obtain damping coefficients of floating structures from free decay tests. This paper presents results obtained from experimental tank tests and numerical computational fluid dynamics simulations of OWSC’s. Agreement between numerical and experimental methods is found to be very good, with CFD providing more data points at small amplitude rotations.
Analysis of the obtained data reveals that linear quadratic-damping, as commonly used in time domain models, is not able to accurately model the occurring damping over the whole regime of rotation amplitudes. The authors
conclude that a hyperbolic function is most suitable to express the instantaneous damping ratio over the rotation amplitude and would be the best choice to be used in coefficient based time domain models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a prism-air gap-sample (Otto) configuration we have optically excited surface plasmon polaritons at the Ag-air interface of passive Al-Al oxide-Ag tunnel junction structures at wavelength 632.8 nm. It is found that the internal damping of this excitation is more than a factor of 2 greater for samples with a very thin (approximately 15 nm) Ag electrode than for samples with a thicker (approximately 40 nm) Ag electrode. This observation is explained by the fact that the fields of the surface plasmon polariton penetrate more substantially into the lossy Al base electrode when the Ag top electrode is very thin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new, diatom-based sea-level reconstruction for Iceland spanning the last -500 years, and investigate the possible mechanisms driving the sea-level changes. A sea-level reconstruction from near the Icelandic low pressure system is important as it can improve understanding of ocean-atmosphere forcing on North Atlantic sea-level variability over multi-decadal to centennial timescales. Our reconstruction is from Viarhólmi salt marsh in Snæfellsnes in western Iceland, a site from where we previously obtained a 2000-yr record based upon less precise sea-level indicators (salt-marsh foraminifera). The 20th century part of our record is corroborated by tide-gauge data from Reykjavik. Overall, the new reconstruction shows ca0.6m rise of relative sea level during the last four centuries, of which ca0.2m occurred during the 20th century. Low-amplitude and high-frequency sea-level variability is super-imposed on the pre-industrial long-term rising trend of 0.65m per 1000 years. Most of the relative sea-level rise occurred in three distinct periods: AD 1620-1650, AD 1780-1850 and AD 1950-2000, with maximum rates of ~3±2mm/yr during the latter two of these periods. Maximum rates were achieved at the end of large shifts (from negative to positive) of the winter North Atlantic Oscillation (NAO) Index as reconstructed from proxy data. Instrumental data demonstrate that a strong and sustained positive NAO (a deep Icelandic Low) generates setup on the west coast of Iceland resulting in rising sea levels. There is no strong evidence that the periods of rapid sea-level rise were caused by ocean mass changes, glacial isostatic adjustment or regional steric change. We suggest that wind forcing plays an important role in causing regional-scale coastal sea-level variability in the North Atlantic, not only on (multi-)annual timescales, but also on multi-decadal to centennial timescales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period∼290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent band passes were found to be out of phase with one another, displaying phase angles of 6.°12, 5.°82,and 15.°97 between the 4170 Å continuum–G-band,G-band–Na i D1, and Na i D1–Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ∼0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 Wm‑2. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze and interpret the oscillatory signal in the decay phase of the U-band light curve of a stellar megaflare observed on 2009 January 16 on the dM4.5e star YZ CMi. The oscillation is well approximated by an exponentially decaying harmonic function. The period of the oscillation is found to be 32 minutes, the decay time about 46 minutes, and the relative amplitude 15%. As this observational signature is typical of the longitudinal oscillations observed in solar flares at extreme ultraviolet and radio wavelengths, associated with standing slow magnetoacoustic waves, we suggest that this megaflare may be of a similar nature. In this scenario, macroscopic variations of the plasma parameters in the oscillations modulate the ejection of non-thermal electrons. The phase speed of the longitudinal (slow magnetoacoustic) waves in the flaring loop or arcade, the tube speed, of about 230 km s-1 would require a loop length of about 200 Mm. Other mechanisms, such as standing kink oscillations, are also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A grid-connected DFIG for wind power generation can affect power system small-signal angular stability in two ways: by changing the system load flow condition and dynamically interacting with synchronous generators (SGs). This paper presents the application of conventional method of damping torque analysis (DTA) to examine the effect of DFIG’s dynamic interactions with SGs on the small-signal angular stability. It shows that the effect is due to the dynamic variation of power exchange between the DFIG and power system and can be estimated approximately by the DTA. Consequently, if the DFIG is modelled as a constant power source when the effect of zero dynamic interactions is assumed, the impact of change of load flow brought about by the DFIG can be determined. Thus the total effect of DFIG can be estimated from the result of DTA added on that of constant power source model. Applications of the DTA method proposed in the paper are discussed. An example of multi-machine power systems with grid-connected DFIGs are presented to demonstrate and validate the DTA method proposed and conclusions obtained in the paper.