167 resultados para DISSOLUTION EFFICIENCY
Resumo:
The electrochemical generation of ozone by Ni/Sb-SnO2 anodes immersed in 0.5M H2SO4 was assessed in both flow and recycle systems using the same electrochemical cell. The anodes were found to exhibit current efficiencies of up to 50% for ozone generation under flow conditions at room temperature, with an optimum mole ratio in the precursor solutions of ca. 500:8:3 Sn:Sb:Ni and optimum cell voltage of 2.7V. A comparison of the data obtained under flow and recycle conditions suggests that the presence of ozone in the anolyte inhibits its formation. The minimum electrical energy cost achieved, of 18 kWh kg1 compares favorably with estimated costs for Cold Corona Discharge generally reported in the literature, especially when the very significant advantages of electrochemical ozone generation are taken into account.
Resumo:
To increase eco-efficiency environmental information needs to be integrated into corporate decision making. For decision makers the interpretation of eco-efficiency as a ratio can however be quite difficult in practice. One of the reasons for this is, that eco-efficiency as a ratio is measured in a unit, that is difficult to interpret. This article therefore suggests an alternative measure for eco-efficiency. The Environmental Value Added, the measure proposed in this paper, reflects the excess economic benefit, resulting from the difference between the eco-efficiency under consideration and a benchmark eco-efficiency. It is measured in a purely monetary unit and is thus easier to interpret and integrate than eco-efficiency as a ratio.
Resumo:
Motivation: Many biomedical experiments are carried out by pooling individual biological samples. However, pooling samples can potentially hide biological variance and give false confidence concerning the data significance. In the context of microarray experiments for detecting differentially expressed genes, recent publications have addressed the problem of the efficiency of sample pooling, and some approximate formulas were provided for the power and sample size calculations. It is desirable to have exact formulas for these calculations and have the approximate results checked against the exact ones. We show that the difference between the approximate and the exact results can be large.
Resumo:
Extraction of dibenzothiophene from dodecane using ionic liquids as the extracting phase has been investigated for a range of ionic liquids with varying cation classes (imidazolium, pyridinium, and pyrrolidinium) and a range of anion types using liquid-liquid partition studies and QSPR (quantitative structure-activity relationship) analysis. The partition ratio of dibenzothiophene to the ionic liquids showed a clear variation with cation class (dimethylpyridinium > methylpyridinium > pyridinium approximate to imidazolium approximate to pyrrolidinium), with much less significant variation with anion type. Polyaromatic quinolinium-based ionic liquids showed even greater extraction potential, but were compromised by higher melting points. For example, 1-butyl-6-methylquinolinium bis{(trifluoromethyl)sulfonyl} amide (mp 47 degrees C) extracted 90% of the available dibenzothiophene from dodecane at 60 degrees C.
Resumo:
The radiation efficiency and resonance frequency of five compact antennas worn by nine individual test subjects was measured at 2.45 GHz in a reverberation chamber. The results show that, despite significant differences in body mass, wearable antenna radiation efficiency had a standard deviation less than 0.6 dB and the resonance frequency shift was less than 1% between test subjects. Variability in the radiation efficiency and resonance frequency shift between antennas was largely dependant on body tissue coupling which is related to both antenna geometry and radiation characteristics. The reverberation chamber measurements were validated using a synthetic tissue phantom and compared with results obtained in a spherical near field chamber and finite-difference time-domain (FDTD) simulation.
Resumo:
Incorporation of 1-alkylcarbonyloxymethylprodrugs of 5FU into poly(lactide-co-glycolide) nanoparticles using nanoprecipitation methods gave increased loading efficiencies over that obtained using the parent drug substance. SEM studies revealed spherical nanoparticles of around 200 nm in diameter, corresponding well with measurements made using photon correlation spectroscopy. The C-7 prodrug gave the best mean loading of 47.23%, which compared favourably to 3.68% loading achieved with 5FU. Loading efficiency was seen to follow the hydrophilic-lipophilic balance in the homologue series, where increases in lipophilicities alone were not good predictors of loading. Drug release, in terms of resultant 5FU concentration, was monitored using a flow-through dissolution apparatus. Cumulative drug release from nanoparticles loaded with the C-5 prodrug was linear over 6h, with approximately 14% of the total available 5FU dose released and with no evidence of a burst effect. The flux profile of the C-5-loaded nanoparticles showed an initial peak in flux in the first sampling interval, but became linear for the remainder of the release phase. C-7-loaded nanoparticles released considerably less (4% in 6 h) with a similar flux pattern to that seen with the C-5 prodrug. The C-9-loaded nanoparticles released less than 1% of the available 5FU over 6 h, with a similar zero-order profile. The C7 prodrug was deemed to be the prodrug of choice, achieving the highest loadings and releasing 5FU, following hydrolysis, in a zero-order fashion over a period of at least 6 h. Given the lack of burst effect and steady-state flux conditions, this nanoparticulate formulation offers a better dosing strategy for sustained intravenous use when compared to that arising from nanoparticles made by direct incorporation of 5FU. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Lanthanide(III) complexes of p-nitrobenzenesulfonic acid, Ln(p-NBSA)(3), m-nitrobenzenesulfonic acid, Ln(m-NBSA)(3), and 2,4-nitrobenzenesulfonic acid, Ln(2,4-NBSA)(3), were prepared, characterized and examined as catalyst for the nitration of benzene, toluene, xylenes, naphthalene, bromobenzene and chlorobenzene. The initial screening of the catalysts showed that lanthanum(III) complexes were more effective than the corresponding ytterbium(III) complexes, and that catalysts containing the bulky 2,4-NBSA ligand were less effective than the catalyst containing p-NBSA (nosylate) or m-NBSA ligands. Examination of a series of Ln(p-NBSA)(3) and Ln(m-NBSA)(3) catalysts revealed that there is a clear correlation between the ionic radii of the lanthanide(III) ions and the yields of nitration, with the lighter lanthanides being more effective. The X-ray single crystal structure of Yb(m-NBSA)(3).6H(2)O shows that two m-NBSA ligands are directly bound to the metal centre while the third ligand is not located in the first coordination sphere, but it is hydrogen bonded to one of the water molecules which is coordinated to ytterbium(III). NMR studies suggest that this structure is preserved under the conditions used in the nitration reaction. The structure of Yb(m-NBSA)(3) is markedly different from the structure of the well-known ytterbium(III) triflate catalyst. The coordination of the nitrobenzenesulfonate counterion to the lanthanide(III) ion suggests that steric effects might play an important role in determining the efficiency of these novel nitration catalysts. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004).
Resumo:
Invasive species may threaten the fundamental role played by native macroinvertebrate shredders in determining energy flow and the trophic dynamics of freshwater ecosystems. Functionally, amphipods have long been regarded as mainly shredders, but they are increasingly recognized as major predators of other macroinvertebrate taxa. Furthermore, intraguild predation (IGP) between native and invasive amphipods underlies many species displacements. We used laboratory mesocosms to investigate what might happen to shredders and leaf-litter processing in water bodies invaded by the highly predatory Ponto-Caspian amphipod Dikerogammarus villosus, which is spreading rapidly throughout Europe and may soon invade the North American Great Lakes. The leaf-shredding efficiency of D. villosus was significantly lower than that of 3 Gammarus species (2 native and 1 invasive) that D. villosus has either already displaced or may be currently displacing in The Netherlands. In addition, D. villosus was a major predator of all of these native and invasive amphipod shredders and of a common isopod shredder Asellus aquaticus. Leaf processing in Gammarus and Asellus mesocosms declined rapidly in the presence of D. villosus and ceased altogether within 4 d because by then, all potential shredders had been killed and consumed. Furthermore, the shredding efficiency of surviving amphipods and isopods declined significantly within 2 d of the release of D. villosus, a result indicating that predator-avoidance behavior may override leaf processing. We discuss the implications of these direct and indirect effects of D. villosus invasions and species displacements on community structure and litter processing in aquatic ecosystems. © 2011 The North American Benthological Society.
--------------------------------------------------------------------------------
Reaxys Database Information|
Resumo:
The aim of this study was to investigate the solubility of mefenamic acid (MA), a highly cohesive, poorly water-soluble drug in a copolymer of polyoxyethylene–polyoxypropylene (Lutrol F681), and to understand the effect drug polymer solubility has on in vitro dissolution of MA. Solid dispersions (SD) of MA were prepared by a hot melt method, using Lutrol F681 as a thermoplastic polymeric platform. High-speed differential scanning calorimetry (Hyper-DSC), Raman spectroscopy, powder X-ray diffractometry (PXRD) and hot-stage/?uorescence microscopy were used to assess the solubility of the drug in molten and solid polymer. Drug dissolution studies were subsequently conducted on single-phase solid solutions and biphasic SD using phosphate buffer pH 6.8 as dissolution media. Solubility investigations using Hyper-DSC, Raman spectroscopy and hot-stage microscopy suggested MA was soluble in molten Lutrol F681 up to a concentration of 35% (w/w). Conversely, the solubility in the solidstate matrix was limited to<15% (w/w); determined by Raman spectroscopy, PXRD and ?uorescence microscopy. As expected the dissolution properties of MA were signi?cantly in?uenced by the solubility of the drug in the polymer matrix. At a concentration of 10% (w/w) MA (a single phase solid solution) dissolution of MA in phosphate buffer 6.8 was rapid, whereas at a concentration of 50% (w/w) MA (biphasic SD) dissolution was signi?cantly slower. This study has clearly demonstrated the complexity of drug– polymer binary blends and in particular de?ning the solubility of a drug within a polymeric platform. Moreover, this investigation has demonstrated the signi?cant effect drug solubility within a polymeric matrix has upon the in vitro dissolution properties of solid polymer/drug binary blends.
Resumo:
In order to introduce specificity for Mycobacterium avium subsp. paratuberculosis prior to a phage amplification assay, various magnetic-separation approaches, involving either antibodies or peptides, were evaluated in terms of the efficiency of capture (expressed as a percentage) of M. avium subsp. paratuberculosis cells and the percentage of nonspecific binding by other Mycobacterium spp. A 50:50 mixture of MyOne Tosylactivated Dynabeads coated with the chemically synthesized M. avium subsp. paratuberculosis-specific peptides biotinylated aMp3 and biotinylated aMptD (i.e., peptide-mediated magnetic separation [PMS]) proved to be the best magnetic-separation approach for achieving 85 to 100% capture of M. avium subsp. paratuberculosis and minimal (<1%) nonspecific recovery of other Mycobacterium spp. (particularly if beads were blocked with 1% skim milk before use) from broth samples containing 103 to 104 CFU/ml. When PMS was coupled with a recently optimized phage amplification assay and used to detect M. avium subsp. paratuberculosis in 50-ml volumes of spiked milk, the mean 50% limit of detection (LOD50) was 14.4 PFU/50 ml of milk (equivalent to 0.3 PFU/ml). This PMS-phage assay represents a novel, rapid method for the detection and enumeration of viable M. avium subsp. paratuberculosis organisms in milk, and potentially other sample matrices, with results available within 48 h.