42 resultados para DISK RESONATORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented is a design methodology which permits the application of distributed coupled resonator bandpass filter principles to form wideband small-aperture evanescent-mode waveguide antenna designs. This approach permits matching of the complex antenna aperture admittance of an evanescent-mode open-ended waveguide to a real impedance generator, and thereby to a coaxial feed probe. A simulated reflection coefficient of < - 10 dB was obtained over a bandwidth of 20%, from 2.0-2.45 GHz, in a 2.58 GHz cutoff waveguide. Dielectric-filled propagating waveguide and air-filled evanescent-mode waveguide sections are used to form the resonators/coupling elements of the antenna's coupled resonator matching sections. Simulated realised gain variation from 3.4-5.0 dBi is observed across the bandwidth. The antenna's maximum aperture dimension is < 0.47 wavelength at the upper operating frequency and so it is suitable for use in a wide angle scanning phased array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HD 100546 is a well-studied Herbig Be star-disk system that likely hosts a close-in companion with compelling observational evidence for an embedded protoplanet at 68 AU. We present ALMA observations of the HD 100546 disk which resolve, for the first time, the gas and dust structure at (sub)mm wavelengths. The CO emission (at 345.795 GHz) originates from an extensive molecular disk (390 AU in radius) whereas the continuum emission is more compact (230 AU in radius) suggesting radial drift of the mm-sized grains. The CO emission is similar in extent to scattered light images indicating well-mixed gas and um-sized grains in the disk atmosphere. Assuming an azimuthally-symmetric disk, the continuum visibilities at long baselines (> 100 klambda) are reproduced by a compact ring with a width of 21 AU centered at 26 AU. An outer component is required to fit the short baselines: assuming a flat brightness distribution, the best-fit model is a ring with a width of 75 AU centered at 190 AU. The influence of a companion and protoplanet on the dust evolution is investigated. The companion at 10 AU facilitates the accumulation of mm-sized grains within a compact ring, ~20-30 AU, by ~10 Myr. The injection of a protoplanet at 1 Myr hastens the ring formation (~1.2 Myr) and also triggers the development of an outer ring (~100-200 AU). These observations provide additional evidence for the presence of a close-in companion and hint at dynamical clearing by a protoplanet at 68 AU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga & Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proliferation of mobile devices in society accessing data via the ‘cloud’ is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that areal densities will need to increase by as much as 35% compound per annum and by 2020 cloud storage capacity will be around 7 zettabytes corresponding to areal densities of 2 Tb/in2. This requires increased performance from the magnetic pole of the electromagnetic writer in the read/write head in the HDD. Current state-of-art writing is undertaken by morphologically complex magnetic pole of sub 100 nm dimensions, in an environment of engineered magnetic shields and it needs to deliver strong directional magnetic field to areas on the recording media around 50 nm x 13 nm. This points to the need for a method to perform direct quantitative measurements of the magnetic field generated by the write pole at the nanometer scale. Here we report on the complete in situ quantitative mapping of the magnetic field generated by a functioning write pole in operation using electron holography. Opportunistically, it points the way towards a new nanoscale magnetic field source to further develop in situ Transmission Electron Microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the sky-projected orbital obliquity (spin–orbit angle) of WASP-84 b, a 0.69MJup planet in an 8.52 day orbit around a G9V/K0V star, to be λ = −0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P d < 10 ) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (Teff < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first detection of a gap and a ring in dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array. The gap and ring are located at 25 and 41 AU from the central star, respectively, and are associated with the CO snowline at ~ 30AU. The gap width and depth are 15AU at the maximum and 23% at the minimum, respectively, regarding that the observations are limited to an angular resolution of ~ 15AU. In addition, we detect a decrement in CO line emission down to ~ 10AU, indicating freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. According to theoretical studies, the gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2 Neptune mass), or result from destruction of large dust aggregates due to the sintering of CO ice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first detection of gas-phase methanol in a protoplanetary disk (TW Hya) is presented. In addition to being one of the largest molecules detected in disks to date, methanol is also the first disk organic molecule with an unambiguous ice chemistry origin. The stacked methanol emission, as observed with the Atacama Large Millimeter/submillimeter Array, is spectrally resolved and detected across six velocity channels (>3σ), reaching a peak signal-to-noise of 5.5σ, with the kinematic pattern expected for TW Hya. Using an appropriate disk model, a fractional abundance of 3 x 10-12 – 4 x 10-11 (with respect to H2) reproduces the stacked line profile and channel maps, with the favored abundance dependent upon the assumed vertical location (midplane versus molecular layer). The peak emission is offset from the source position, suggesting that the methanol emission has a ring-like morphology: the analysis here suggests it peaks at ≈30 au, reaching a column density ≈3–6 x 1012 cm−2. In the case of TW Hya, the larger (up to millimeter-sized) grains, residing in the inner 50 au, may thus host the bulk of the disk ice reservoir. The successful detection of cold gas-phase methanol in a protoplanetary disk implies that the products of ice chemistry can be explored in disks, opening a window into studying complex organic chemistry during planetary system formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for assessing the activity of a powdered water oxidation catalyst (WOC) is described, utilising an easily-prepared wireless rotating disc electrode of the WOC, thereby allowing its activity to be probed, via the observed kinetics of water oxidation by Ce(IV) ions, and so provide invaluable electrochemical information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schrödinger’s cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored ‘quantum-classical’ transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report 3 au resolution imaging observations of the protoplanetary disk aroundTW Hya at 145 and 233 GHz with the Atacama Large Millimeter/Submillimeter Array.Our observations revealed two deep gaps (~25-50 %) at 22 and 37 au and shallowergaps (a few %) at 6, 28, and 44 au, as recently reported by Andrews et al. (2016). Thecentral hole with a radius of  3 au was also marginally resolved. The most remarkablefinding is that the spectral index α(R) between bands 4 and 6 peaks at the 22 au gap.The derived power-law index of the dust opacity β(R) is  ~1.7 at the 22 au gap anddecreases toward the disk center to ~0. The most prominent gap at 22 au could becaused by the gravitational interaction between the disk and an unseen planet with amass of ≲1.5 MNeptune although other origins may be possible. The planet-induced gap is supported by the fact that β(R) is enhanced at the 22 au gap, indicating a deficitof mm-sized grains within the gap due to dust filtration by a planet.