48 resultados para DIAGNOdent pen 2190
Resumo:
An ink, comprising the redox dye resazurin (Rz) and the sacrificial electron donor glycerol, is shown to be capable of the rapid assessment of the photocatalytic activities of self-cleaning films. In the key initial stage of photocatalysis the ink changes from blue to pink. Prolonged irradiation bleaches the ink and eventually mineralizes it. The kinetics of the initial photoinduced color change is studied as a function of UV irradiance, [glycerol], [Rz], and temperature. The results reveal an apparent approximate quantum yield of 3.5 x 10(-3) and an initial rate, r(i), which increases with [glycerol] and decreases with [Rz]. It is proposed that the reduction of Rz, dispersed throughout the thick (ca. 590 nm) indicator film, may take place either via the diffusion of the dye molecules in the ink film to the surface of the underlying semiconductor layer and their subsequent reaction with photogenerated electrons and/or via the diffusion of alpha-hydroxyalkyl radicals, produced by the oxidation of the glycerol by photogenerated holes, or hydroxy radicals, away from the surface of the semiconductor into the ink film and their subsequent reaction with the dye molecules therein. The decrease in r(i) with [Rz] appears to be due to dimer formation, with the latter impeding the reduction process. The activation energy for the initial color-change process is low, ca. 9.1 +/- 0.1 kJ mol(-1) and not unlike many other photocatalytic processes. The initial rate of dye reduction appears to be directly related to the rate of destruction of stearic acid. The ink can be applied by spin-coating, stamping, or writing, using a felt-tip pen. The efficacy of such an ink for assessing the photocatalytic activity of any photocatalytic film, including those employed on commercial self-cleaning glasses, tiles, and paving stones, is discussed briefly.
Resumo:
Melt viscosity is a key indicator of product quality in polymer extrusion processes. However, real time monitoring and control of viscosity is difficult to achieve. In this article, a novel “soft sensor” approach based on dynamic gray-box modeling is proposed. The soft sensor involves a nonlinear finite impulse response model with adaptable linear parameters for real-time prediction of the melt viscosity based on the process inputs; the model output is then used as an input of a model with a simple-fixed structure to predict the barrel pressure which can be measured online. Finally, the predicted pressure is compared to the measured value and the corresponding error is used as a feedback signal to correct the viscosity estimate. This novel feedback structure enables the online adaptability of the viscosity model in response to modeling errors and disturbances, hence producing a reliable viscosity estimate. The experimental results on different material/die/extruder confirm the effectiveness of the proposed “soft sensor” method based on dynamic gray-box modeling for real-time monitoring and control of polymer extrusion processes. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers
Resumo:
An approximate analysis of gas absorption with instantaneous reaction in a liquid layer of finite thickness in plug flow is presented. An approximate solution to the enhancement factor for the case of unequal diffusivities between the dissolved gas and the liquid reactant has been derived and validated by numerical simulation. Depending on the diffusivity ratio of the liquid reactant to the dissolved gas (?), the enhancement factor tends to be either lower or higher than the prediction of the classical enhancement factor equation based on the penetration theory (Ei,pen) at Fourier numbers typically larger than 0.1. An empirical correlation valid for all Fourier numbers is proposed to allow a quick estimation of the enhancement factor, which describes the prediction of the approximate solution and the simulation data with a relative error below 5?% under the investigated conditions (? = 0.34, Ei,pen = 21000).
Resumo:
Retinal vasoconstriction and reduced retinal blood flow precede the onset of diabetic retinopathy. The pathophysiological mechanisms that underlie increased retinal arteriolar tone during diabetes remain unclear. Normally, local Ca(2+) release events (Ca(2+)-sparks), trigger the activation of large-conductance Ca(2+)-activated K(+)(BK)-channels which hyperpolarize and relax vascular smooth muscle cells, thereby causing vasodilatation. In the present study, we examined BK channel function in retinal vascular smooth muscle cells from streptozotocin-induced diabetic rats. The BK channel inhibitor, Penitrem A, constricted nondiabetic retinal arterioles (pressurized to 70mmHg) by 28%. The BK current evoked by caffeine was dramatically reduced in retinal arterioles from diabetic animals even though caffeine-evoked [Ca(2+)](i) release was unaffected. Spontaneous BK currents were smaller in diabetic cells, but the amplitude of Ca(2+)-sparks was larger. The amplitudes of BK currents elicited by depolarizing voltage steps were similar in control and diabetic arterioles and mRNA expression of the pore-forming BKalpha subunit was unchanged. The Ca(2+)-sensitivity of single BK channels from diabetic retinal vascular smooth muscle cells was markedly reduced. The BKbeta1 subunit confers Ca(2+)-sensitivity to BK channel complexes and both transcript and protein levels for BKbeta1 were appreciably lower in diabetic retinal arterioles. The mean open times and the sensitivity of BK channels to tamoxifen were decreased in diabetic cells, consistent with a downregulation of BKbeta1 subunits. The potency of blockade by Pen A was lower for BK channels from diabetic animals. Thus, changes in the molecular composition of BK channels could account for retinal hypoperfusion in early diabetes, an idea having wider implications for the pathogenesis of diabetic hypertension.
Resumo:
Despite concern about the harmful effects of substances contained in various
plastic consumer products, little attention has focused on the more heavily
exposed women working in the plastics industry. Through a review of the
toxicology, industrial hygiene, and epidemiology literatures in conjunction
with qualitative research, this article explores occupational exposures in producing
plastics and health risks to workers, particularly women, who make up
a large part of the workforce. The review demonstrates that workers are
exposed to chemicals that have been identified as mammary carcinogens and
endocrine disrupting chemicals, and that the work environment is heavily
contaminated with dust and fumes. Consequently, plastics workers have a
body burden that far exceeds that found in the general public.
Resumo:
OBJECTIVE: To assess the agreement of tonometers available for clinical practice with the Goldmann applanation tonometer (GAT), the most commonly accepted reference device.
DESIGN: A systematic review and meta-analysis of directly comparative studies assessing the agreement of 1 or more tonometers with the reference tonometer (GAT).
PARTICIPANTS: A total of 11 582 participants (15 525 eyes) were included.
METHODS: Summary 95% limits of agreement (LoA) were produced for each comparison.
MAIN OUTCOME MEASURES: Agreement, recordability, and reliability.
RESULTS: A total of 102 studies, including 130 paired comparisons, were included, representing 8 tonometers: dynamic contour tonometer, noncontact tonometer (NCT), ocular response analyzer, Ocuton S, handheld applanation tonometer (HAT), rebound tonometer, transpalpebral tonometer, and Tono-Pen. The agreement (95% limits) seemed to vary across tonometers: 0.2 mmHg (-3.8 to 4.3 mmHg) for the NCT to 2.7 mmHg (-4.1 to 9.6 mmHg) for the Ocuton S. The estimated proportion within 2 mmHg of the GAT ranged from 33% (Ocuton S) to 66% and 59% (NCT and HAT, respectively). Substantial inter- and intraobserver variability were observed for all tonometers.
CONCLUSIONS: The NCT and HAT seem to achieve a measurement closest to the GAT. However, there was substantial variability in measurements both within and between studies.
Resumo:
Physical examination of the newborn (PEN) was established as part of postnatal care in the late 1960s. The role of discharging babies within the first 72 hours of birth was traditionally undertaken by junior doctors. Currently midwives, nurses, advanced nurse practitioners, and health visitors are being trained to undertake the PEN (NHS Screening Programmes, 2010). However, only a fraction of midwives utilize their acquired skills in clinical practice. A survey by Townsend et al (2004) showed that 2% of babies in England were examined by midwives while 83% were examined by junior doctors.This study aimed to evaluate how well midwives who undertook the PEN course between 2002 and 2005 (n = 40) at a large London University utilized the skills acquired on the course. Questionnaires with a series of open and closed questions were sent out by post followed by phone and email reminders. The eight that responded were midwives. All respondents said they were appropriately trained and felt well prepared for their role to examine babies. However, they felt they were not provided with opportunities to use the skills. Guidelines based on this extended role are available in the workplace but only a few midwives seemed to have negotiated time to implement these and may need greater managerial support for the role.
Multiscale simulation of nanometric cutting of single crystal copper and its experimental validation
Resumo:
In this paper a multiscale simulation study was carried out in order to gain in-depth understanding of machining mechanism of nanometric cutting of single crystal copper. This study was focused on the effects of crystal orientation and cutting direction on the attainable machined surface quality. The machining mechanics was analyzed through cutting forces, chip formation morphology, generation and evolution of defects and residual stresses on the machined surface. The simulation results showed that the crystal orientation of the copper material and the cutting direction significantly influenced the deformation mechanism of the workpiece materials during the machining process. Relatively lower cutting forces were experienced while selecting crystal orientation family {1 1 1}. Dislocation movements were found to concentrate in front of the cutting chip while cutting on the (1 1 1) surface along the View the MathML source cutting direction thus, resulting in much smaller damaged layer on the machined surface, compared to other orientations. This crystal orientation and cutting direction therefore recommended for nanometric cutting of single crystal copper in practical applications. A nano-scratching experiment was performed to validate the above findings.
Resumo:
The cooling process in conventional rotomolding is relatively long due to poor thermal conductivity of plastics. The lack of internal cooling is a major limitation although rapid external cooling is possible. Various internal cooling methodologies have been studied to reduce the cycle time. These include the use of compressed air, cryogenic liquid nitrogen, chilled water coils, and cryogenic liquid carbon dioxide, all of which have limitations. However, this article demonstrates the use of water spray cooling of polymers as a viable and effective method for internal cooling in rotomolding. To this end, hydraulic, pneumatic, and ultrasonic nozzles were applied and evaluated using a specially constructed test rig to assess their efficiency. The effects of nozzle type and different parametric settings on water droplet size, velocity, and mass flow rate were analyzed and their influence on cooling rate, surface quality, and morphology of polymer exposed to spray cooling were characterized. The pneumatic nozzle provided highest average cooling rate while the hydraulic nozzle gave lowest average cooling rate. The ultrasonic nozzle with medium droplet size traveling at low velocity produced satisfactory surface finish. Water spray cooling produced smaller spherulites compared to ambient cooling whilst increasing the cooling rate decreases the percentage crystallinity. © 2011 Society of Plastics Engineers Copyright © 2011 Society of Plastics Engineers.
Resumo:
The effect of nonconservative current-induced forces on the ions in a defect-free metallic nanowire is investigated using both steady-state calculations and dynamical simulations. Nonconservative forces were found to have a major influence on the ion dynamics in these systems, but their role in increasing the kinetic energy of the ions decreases with increasing system length. The results illustrate the importance of nonconservative effects in short nanowires and the scaling of these effects with system size. The dependence on bias and ion mass can be understood with the help of a simple pen and paper model. This material highlights the benefit of simple preliminary steady-state calculations in anticipating aspects of brute-force dynamical simulations, and provides rule of thumb criteria for the design of stable quantum wires.
Resumo:
Myeloproliferative neoplasms (MPNs) are rare diseases that include classic entities; polycythaemia vera, essential thrombocythaemia and primary myelofibrosis. In this short report, minor allele frequencies of common MPN mutations are compared between the Irish blood donor population and other populations of European descent using data from the Haplotype Map project. The Affymetrix array 6.0 platform was utilised identifying nine single nucleotide polymorphisms (SNPs) and six proxy SNPs. The variability of allele frequencies for MPN mutations could account for the different incidence rates seen between populations of European ancestry, giving a better understanding of the genetic predisposition to MPNs.
Resumo:
Timely and individualized feedback on coursework is desirable from a student perspective as it facilitates formative development and encourages reflective learning practice. Faculty however are faced with a significant and potentially time consuming challenge when teaching larger cohorts if they are to provide feedback which is timely, individualized and detailed. Additionally, for subjects which assess non-traditional submissions, such as Computer-Aided-Design (CAD), the methods for assessment and feedback tend not to be so well developed or optimized. Issues can also arise over the consistency of the feedback provided. Evaluations of Computer-Assisted feedback in other disciplines (Denton et al, 2008), (Croft et al, 2001) have shown students prefer this method of feedback to traditional “red pen” marking and also that such methods can be more time efficient for faculty.
Herein, approaches are described which make use of technology and additional software tools to speed up, simplify and automate assessment and the provision of feedback for large cohorts of first and second year engineering students studying modules where CAD files are submitted electronically. A range of automated methods are described and compared with more “manual” approaches. Specifically one method uses an application programming interface (API) to interrogate SolidWorks models and extract information into an Excel spreadsheet, which is then used to automatically send feedback emails. Another method describes the use of audio recordings made during model interrogation which reduces the amount of time while increasing the level of detail provided as feedback.
Limitations found with these methods and problems encountered are discussed along with a quantified assessment of time saving efficiencies made.
Resumo:
Polymer extrusion is fundamental to the processing of polymeric materials and melt flow temperature homogeneity is a major factor which influences product quality. Undesirable thermal conditions can cause problems such as melt degradation, dimensional instability, weaknesses in mechanical/optical/geometrical properties, and so forth. It has been revealed that melt temperature varies with time and with radial position across the die. However, the majority of polymer processes use only single-point techniques whose thermal measurements are limited to the single point at which they are fixed. Therefore, it is impossible for such techniques to determine thermal homogeneity across the melt flow. In this work, an extensive investigation was carried out into melt flow thermal behavior of the output of a single extruder with different polymers and screw geometries over a wide range of processing conditions. Melt temperature profiles of the process output were observed using a thermocouple mesh placed in the flow and results confirmed that the melt flow thermal behavior is different at different radial positions. The uniformity of temperature across the melt flow deteriorated considerably with increase in screw rotational speed while it was also shown to be dependent on process settings, screw geometry, and material properties. Moreover, it appears that the effects of the material, machine, and process settings on the quantity and quality of the process output are heavily coupled with each other and this may cause the process to be difficult to predict and variable in nature
Resumo:
Set in the borderlands between Letterkenny and Derry-Londonderry, a landscape scarred by geological fold, river and cartographer’s pen, the Ulster crime novelist Brian McGilloway chronicles the hopes and fears of a contemporary society unable to escape a complicated history, redolent and entwined with the voices of its ‘ghosts of its past.’ Through his choice of chief protagonist, An Garda Síochána officer Benedict Devlin, McGilloway turns detective to critically investigate the both the seemingly straightforward and the unseen dwelling in the rural Ulster landscape. Following in the footsteps of Nordic and Tartan Noir in making commentary on current societ,y McGilloway recognises the importance of the past in trying to reach an understanding of the present. His critique however goes beyond criminal behaviour motivated primarily by politics or religion, allowing a deeper and more meaningful diagnosis of the ‘state of the nation’. Place, name and event become especially important in contextualising the liminality of McGilloway’s real rural border settings. In doing so, McGilloway continues in the rich tradition of Ulster poet such as Heaney, MacNiece, Muldoon and Hewitt in trying to rationalise the man-made amidst the elemental in the land of both the ‘Planter & The Gael.’ History, language, tradition and the sacral are all instruments of investigation in helping McGilloway present a revealing pathology and atlas of our times to his readers. Turning literary investigator, the author contends that there is much to learn from this physiography, not just for the borderlands region, but for the wider countryside and society beyond. Keywords Cultural Atlas, Crime Fiction, Place, Poetry, Rural.