87 resultados para DGGE (denaturating gradient gel electrophoresis)
Resumo:
IQGAPs are cytoskeletal scaffolding proteins which link signalling pathways to the reorganisation of actin and microtubules. Human IQGAP1 has four IQ motifs each of which binds to calmodulin. The same region has been implicated in binding to two calmodulin-like proteins, the myosin essential light chain Mlc1sa and the calcium and zinc ion binding protein S100B. Using synthetic peptides corresponding to the four IQ motifs of human IQGAP1, we showed by native gel electrophoresis that only the first IQ motif interacts with Mlc1sa. This IQ motif, and also the fourth, interacts with the budding yeast myosin essential light chain Mlc1p. The first and second IQ motifs interact with S100B in the presence of calcium ions. This clearly establishes that S100B can interact with its targets through IQ motifs in addition to interacting via previously reported sequences. These results are discussed in terms of the function of IQGAP1 and IQ motif recognition.
Resumo:
Aims/hypothesis: SMAD proteins are involved in multiple signalling pathways and are key modulators of gene expression. We hypothesised that genetic variation in selected SMAD genes contributes to susceptibility to diabetic nephropathy. Methods: We selected 13 haplotype tag (ht) single nucleotide polymorphisms (SNPs) from 67 variants identified by resequencing the SMAD2 and SMAD3 genes. For SMAD1, SMAD4 and SMAD5 genes, genotype data were downloaded for 217 SNPs from Phase II of the International HapMap project. Of these, 85 SNPs met our inclusion criteria, resulting in the selection of 13 tag SNPs for further investigation. A case-control approach was employed, using 267 nephropathic patients and 442 controls with type 1 diabetes from Ireland. Two further populations (totalling 1,407 patients, 2,238 controls) were genotyped to validate initial findings. Genotyping was conducted using iPLEX, TaqMan and gel electrophoresis.
Results: The distribution of genotypes was in Hardy-Weinberg equilibrium. Analysis by the ? 2 test of genotype and allele frequencies in patients versus controls in the Irish population (n?=?709) revealed evidence for the association of one allele at 5% level of significance (rs10515478, p uncorrected?=?0.006; p corrected?=?0.04). This finding represents a relatively small difference in allele frequency of 6.4% in the patient group compared with 10.7% in the control group; this difference was not supported in subsequent investigations using DNA from European individuals with similar phenotypic characteristics.
Conclusions/interpretation: We selected an appropriate subset of variants for the investigation of common genetic risk factors and assessed SMAD1 to SMAD5 genes for association with diabetic nephropathy. We conclude that common polymorphisms in these genes do not strongly influence genetic susceptibility to diabetic nephropathy in white individuals with type 1 diabetes mellitus.
Resumo:
Habitual exercisers enjoy considerable protection from coronary heart disease (CHD). Often, however, only modest differences in traditional CHD risk factors are apparent between habitual exercisers and their sedentary counterparts. For this reason, there is increasing interest in novel predictors of CHD, such as a preponderance of small, dense low-density lipoprotein (LDL) particles. Polyacrylamide gel electrophoresis was used to separate lipoprotein subfractions in 32 lean exercisers, 36 lean sedentary men and 21 obese sedentary men aged 30-45 years. Well-validated equations were used to determine LDL concentration and peak particle diameter. Waist girth was used to identify lean (<100 cm) and obese ( >= 100cm) individuals. LDL concentration was lower in lean exercisers than in lean sedentary men (2.64 +/- 0.44 vs. 3.76 +/- 0.79 mmol.l(-1), p <0.001), suggesting that habitual exercise influences this risk factor. In contrast, there were no significant differences in LDL peak particle diameter between lean exercisers, lean sedentary men and obese sedentary men (27.92 +/- 0.67, 28.09 +/- 0.62 and 27.77 +/- 0.77 nm, respectively). In multiple linear regression analysis, triglyceride concentration was the only significant predictor of LDL PPD. These data suggest that habitual exercise influences LDL concentration but does not influence LDL particle size in men aged 30-45 years.
Resumo:
Synovial fluid is a potential source of novel biomarkers for many arthritic disorders involving joint inflammation, including juvenile idiopathic arthritis. We first compared the distinctive protein ‘fingerprints’ of local inflammation in synovial fluid with systemic profiles within matched plasma samples. The synovial fluid proteome at the time of joint inflammation was then evaluated across clinical subgroups to identify early disease associated proteins. We measured the synovial fluid and plasma proteomes using the two-dimensional fluorescence difference gel electrophoresis approach. Image analysis software was used to highlight the expression levels of joint and subgroup associated proteins across the study cohort (n = 32). A defined subset of 30 proteins had statistically significant differences (p < 0.05) between sample types such that synovial fluid could be differentiated from plasma. Furthermore distinctive synovial proteome expression patterns segregate patient subgroups. Protein expression patterns localized in the chronically inflamed joint therefore have the potential to identify patients more likely to suffer disease which will spread from a single joint to multiple joints. The proteins identified could act as criteria to prevent disease extension by more aggressive therapeutic intervention directed at an earlier stage than is currently possible.
Resumo:
The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.
Resumo:
The single-cell gel electrophoresis technique or comet assay is widely regarded as a quick and reliable method of analysing DNA damage in individual cells. It has a proven track record from the fields of biomonitoring to nutritional studies. The assay operates by subjecting cells that are fixed in agarose to high salt and detergent lysis, thus removing all the cellular content except the DNA. By relaxing the DNA in an alkaline buffer, strands containing breaks are released from supercoiling. Upon electrophoresis, these strands are pulled out into the agarose, forming a tail which, when stained with a fluorescent dye, can be analysed by fluorescence microscopy. The intensity of this tail reflects the amount of DNA damage sustained. Despite being such an established and widely used assay, there are still many aspects of the comet assay which are not fully understood. The present review looks at how the comet assay is being used, and highlights some of its limitations. The protocol itself varies among laboratories, so results from similar studies may vary. Given such discrepancies, it would be attractive to break the assay into components to generate a mathematical model to investigate specific parameters.
Resumo:
The binding of drugs to plasma proteins – especially serum albumin – is an important factor in controlling the availability and distribution of these drugs. In this study we have investigated the binding of two drugs commonly used to treat liver fluke infections, albendazole (ABZ) and triclabendazole (TCBZ), and their sulphoxide metabolites to bovine serum albumin (BSA). Both ABZ and TCBZ caused shifts in the mobility of BSA in native gel electrophoresis. No such changes were observed with the sulphoxides under identical conditions. The drugs, and their sulphoxides, caused quenching of the intrinsic tryptophan fluorescence of BSA, indicating association between the drugs and this protein. Quantification of this quenching suggested a 5–10-fold reduction in affinity of the sulphoxides compared to the parent compounds. These results are discussed in respect to previous work on the pharmacodynamics of these fasciolicides and will inform the design of novel anthelmintics.
Resumo:
PURPOSE. Advanced glycation end products (AGES) form irreversible cross- links with many macromolecules and have been shown to accumulate in tissues at an accelerated rate in diabetes. In the present study, AGE formation in vitreous was examined in patients of various ages and in patients with diabetes. Ex vivo investigations were performed on bovine vitreous incubated in glucose to determine AGE formation and cross-linking of vitreous collagen. METHODS. By means of an AGE-specific enzyme-linked immunosorbent assay (ELISA), AGE formation was investigated in vitreous samples obtained after pars plana vitrectomy in patients with and without diabetes. In addition, vitreous AGES were investigated in bovine vitreous collagen after incubation in high glucose, high glucose with aminoguanidine, or normal saline for as long as 8 weeks. AGEs and AGE cross-linking was subsequently determined by quantitative and qualitative assays. RESULTS. There was a significant correlation between AGEs and increasing age in patients without diabetes (r = 0.74). Furthermore, a comparison between age-matched diabetic and nondiabetic vitreous showed a significantly higher level of AGEs in the patients with diabetes (P < 0.005). Collagen purified from bovine vitreous incubated in 0.5 M glucose showed an increase in AGE formation when observed in dot blot analysis, immunogold labeling, and AGE ELISA. Furthermore, there was increased cross-linking of collagen in the glucose-incubated vitreous, when observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein separation. This cross-linking was effectively inhibited by coincubation with 10 mM aminoguanidine. CONCLUSIONS. This study suggests that AGEs may form in vitreous with increasing age. This process seems to be accelerated in the presence of diabetes and as a consequence of exposure to high glucose. Advanced glycation and AGE cross-linking of the vitreous collagen network may help to explain the vitreous abnormalities characteristic of diabetes.
Resumo:
http://www.jidc.org/index.php/journal/article/view/20818098/422 Background: Extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae have been reported previously from Pakistan but the genotypic characteristics of these enzymes is not known. Hence the aim of the study was first to characterise the genotypic content of these beta-lactamases and secondly to assess the clonal relationship of these isolates. Methodology: We analysed 65 non-duplicate ESBL positive, K. pneumoniae isolates prospectively collected based on phenotype as detected using the two-disc method. Isolates were collected from different sources: blood cultures (46.15%; n = 30); tracheal aspirates (24.6%; n = 16); urine (10.7%; n = 7); wound swabs, pus and tissue (18.4%; n = 12). ESBL production was confirmed by the ESBL E-test method and the presence of the blaCTX-M encoding genes was confirmed by polymerase chain reaction. The clonal relationship of clinical isolates was studied by Pulsed Field Gel Electrophoresis. Results: The results showed that 93.84% (n = 61) isolates of K. pneumoniae were positive for the blaCTX-M-1 group. One isolate showed PCR signals for blaCTX-M-25 group. None of our isolates were positive for CTX-M groups 2, 8 and 9. The majority of blaCTX-M positive isolates were genetically unrelated and no epidemic clones were identified. Conclusion: This study reports the emergence of CTX-M groups 1 and 25 producing isolates of K. pneumoniae with genetic diversity in Karachi, Pakistan.
Resumo:
Control of Fasciola hepatica infections of livestock in the absence of vaccines depends largely on the chemical triclabendazole (TCBZ) because it is effective against immature and adult parasites. Overdependence on a single drug and improper application is considered a significant factor in increasing global reports of fluke resistant to TCBZ. The mode(s) of action and biological target(s) of TCBZ are not confirmed, delaying detection and the monitoring of early TCBZ resistance. In this study, to further understand liver fluke response to TCBZ, the soluble proteomes of TCBZ-resistant and TCBZ-susceptible isolates of F. hepatica were compared with and without in vitro exposure to the metabolically active form of the parent drug triclabendazole sulphoxide (TCBZ-SO), via two-dimensional gel electrophoresis (2-DE). Gel image analysis revealed proteins displaying altered synthesis patterns and responses both between isolates and under TCBZ-SO exposure. These proteins were identified by mass spectrometry supported by a F. hepatica expressed sequence tag (EST) data set. The TCBZ responding proteins were grouped into three categories; structural proteins, energy metabolism proteins, and “stress” response proteins. This single proteomic investigation supported the reductionist experiments from many laboratories that collectively suggest TCBZ has a range of effects on liver fluke metabolism. Proteomics highlighted differences in the innate proteome profile of different fluke isolates that may influence future therapy and diagnostics design. Two of the TCBZ responding proteins, a glutathione transferase and a fatty acid binding protein, were cloned, produced as recombinants, and both found to bind TCBZ-SO at physiologically relevant concentrations, which may indicate a role in TCBZ metabolism and resistance.
Resumo:
The effect of a cold (<40 °C) radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. Gel electrophoresis was used to analyze the DNA forms post-treatment. The experimental data are fitted to a rate equation model that allows for quantitative determination of the rates of single and double strand break formation. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks.
Resumo:
Chemokine (C-C motif) ligand 5 (CCL5) and chemokine (C-C motif) receptor 5 are implicated in the pathogenesis of diabetic nephropathy (DN). We hypothesize that variants in these genes may be associated with DN. The CCL5 and chemokine receptor type 5 (CCR5) genes were resequenced, variants identified (n=58), allele frequencies determined in 46 individuals (92 chromosomes) and efficient haplotype tag single-nucleotide polymorphisms (htSNPs) selected to effectively evaluate the common variation in these genes. One reportedly functional gene variant and eight htSNPs were genotyped in a case-control association study involving Caucasian individuals with type 1 diabetes (267 cases with DN and 442 non-nephropathic diabetic controls). Genotyping was performed using MassARRAY iPLEX, TaqMan, gel electrophoresis and direct capillary sequencing. After correction for multiple testing, there were no statistically significant associations between variants in the CCL5 and CCR5 genes and DN. Journal of Human Genetics (2010) 55, 248-251; doi:10.1038/jhg.2010.15; published online 5 March 2010
Resumo:
Antioxidant species may act in vivo to decrease oxidative damage to DNA, protein and lipids thus reducing the risk of coronary heart disease and cancer. Phytoestrogens are plant compounds which are a major component of traditional Asian diets and which may be protective against certain hormone-dependent cancers (breast and prostate) and against coronary heart disease. They may also be able to function as antioxidants, scavenging potentially harmful free radicals. In this study, the effects of the isoflavonoids (a class of phytoestrogen) genistein and equol on hydrogen peroxide-mediated DNA damage in human lymphocytes were determined using alkaline single-cell gel electrophoresis (the comet assay). Treatment with hydrogen peroxide significantly increased the levels of DNA strand breaks. Pre-treatment of the cells with both genistein and equol offered protection against this damage at concentrations within the physiological range. This protection was greater than that offered by addition of the known antioxidant vitamins ascorbic acid and alpha -tocopherol, or the compounds 17 beta -oestradiol and Tamoxifen which have similar structures to isoflavonoids and are known to have weak antioxidant properties. These findings are consistent with the hypothesis that phytoestrogens can, under certain conditions, function as antioxidants and protect against oxidatively-induced DNA damage. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Thioacetamide (TAA) administration is an established technique for generating rat models of liver fibrosis and cirrhosis. Oxidative stress is believed to be involved as TAA-induced liver fibrosis is initiated by thioacetamide S-oxide, which is derived from the biotransformation of TAA by the microsomal flavine-adenine dinucleotide (FAD)-containing monooxygense (FMO) and cytochrome P450 systems. A two-dimensional gel electrophoresis-mass spectrometry approach was applied to analyze the protein profiles of livers of rats administered with sublethal doses of TAA for 3, 6 and 10 weeks respectively. With this approach, 59 protein spots whose expression levels changed significantly upon TAA administration were identified, including three novel proteins. These proteins were then sorted according to their common biochemical properties and functions, so that pathways involved in the pathogenesis of rat liver fibrosis due to TAA-induced toxicity could be elucidated. As a result, it was found that TAA-administration down-regulated the enzymes of the primary metabolic pathways such as fatty acid beta-oxidation, branched chain amino acids and methionine breakdown. This phenomenon is suggestive of the depletion of succinyl-CoA which affects heme and iron metabolism. Up-regulated proteins, on the other hand, are related to oxidative stress and lipid peroxidation. Finally, these proteomics data and the data obtained from the scientific literature were integrated into an
Resumo:
The development of a quick PCR-based method to distinguish European cryptic Myotis spp., Myotis mystacinus, Myotis brandtii and Myotis alcathoe is described. Primers were designed around species-specific single nucleotide polymorphisms (SNP’s) in the ND1 mitochondrial gene, and a pair of control primers was designed in the 12S mitochondrial gene. A multiplex of seven primer combinations produces clear species-specific bands using gel electrophoresis. Robustness of the method was tested on 33 M. mystacinus, 16 M. brandtii and 15 M. alcathoe samples from across the European range of these species. The method worked well on faecal samples collected from maternity roosts of M. mystacinus. The test is intended to aid collection of data on these species through a rapid and easy identification method with the ability to use DNA obtained from a range of sources including faecal matter.