62 resultados para Cytoplasm.
Resumo:
Immunochemical techniques were used to determine the distribution, chemical characteristics and relative abundance of immunoreactivity (IR) to two native platyhelminth neuropeptides, neuropeptide F (NPF) (Moniezia expansa) and the FMRFamide-related peptide (FaRP), GNFFRFamide, in the trematodes, Fasciola hepatica and Schistosoma mansoni; the larger S. margrebowiei was used in the chemical analysis. Extensive immunostaining for the two peptides was demonstrated throughout the nervous systems of both F. hepatica and S. mansoni, with strong IR also in the innervation of muscular structures, including those associated with the egg-forming apparatus. The patterns of immunostaining were similar to those previously described for the vertebrate neuropeptide Y superfamily of peptides and for FMRFamide. Ultrastructurally, gold labelling of NPF- and GNFFRFamide-IRs was localized exclusively to the contents of secretory vesicles in the axons and somatic cytoplasm of neurones. Double-labelling experiments showed an apparent homogeneity of antigenic sites, in all probability due to the demonstrated cross-reactivity of the FaRP antiserum with NPF. Radioimmunoassay of acid-ethanol extracts of the worms detected 8.3 pmol/g and 4.7 pmol/g equivalents of NPF- and FMRFamide-IRs, respectively, for F. hepatica, and corresponding values of 4.9 pmol/g and 4.3 pmol/g equivalents for S. margrebowiei. Gel-permeation chromatography resolved IR to both peptides in discrete peaks and these eluted in similar positions to synthetic NPF (M. expansa) and GNFFRFamide, respectively.
Resumo:
Indirect immunocytochemistry, in conjunction with confocal scanning laser microscopy and electron-microscopic immunogold labeling, has been used to localize neuropeptide and 5-hydroxytryptamine (5-HT) immunereactivities (IRs) in the plerocercoid (scolex and surrounding blastocyst) of the trypanorhynch tapeworm, Grillotia erinaceus. Antisera directed to two native cestode neuropeptides, neuropeptide F and the FMRFamide-related peptide, GNFFRFamide, were used to demonstrate the presence of a well-developed and extensive peptide-immunoreactive nervous system of central and peripheral elements in the juvenile scolex. Neuronal connectivity exists between the scolex and the surrounding blastocyst, in which there is a rich innervation of varicose fibers displaying peptide IR. Ultrastructurally, gold labeling of the peptide IR was found exclusively over the contents of dense secretory vesicles in the axons and somatic cytoplasm of neurons. Double-labeling experiments demonstrated an apparent colocalization of peptide IR, although the results of antigen preadsorption procedures indicated substantial cross-reactivity of the two antisera. A separate and well-differentiated 5-HT-immunoreactive nervous system, with a similar anatomical arrangement as the peptide-immunoreactive nervous system, is present in both the scolex and blastocyst (C) 1994 Academic Press, Inc.
Resumo:
Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS). The presence of immunostimulating factors or concurrent infections seems to be crucial for PMWS development. Lipopolysaccharide (LPS) is a potent immunological activator and has recently been suggested to enhance PCV2 replication in vitro. This study was designed to evaluate the effects of different LPS products on PCV2 in vitro replication of pulmonary macrophages (PMs), and on the potential ability to trigger PMWS in cesarean-derived, colostrum-deprived (CDCD) PCV2-inoculated piglets. In vitro studies using two different PCV2 isolates (Stoon-1010 and 1452/3) showed the presence of PCV2 antigen within the cytoplasm to a variable degree; PCV2 Stoon-1010 was barely detectable (
Resumo:
Cystic fibrosis (CF) is the most common inherited lethal disease in Caucasians which results in multiorgan dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR Delta F508 (Delta F508) mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1 beta. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type but not in Delta F508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-Delta F508 macrophages than in WT macrophages. An autophagosome is a compartment that engulfs nonfunctional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and Delta F508 macrophages. However, autophagy dysfunction is more pronounced in Delta F508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.
Resumo:
Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (Wzx(EcO157)) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that Wzx(EcO157) consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.
Resumo:
Burkholderia cenocepacia, a bacterium commonly found in the environment, is an important opportunistic pathogen in patients with cystic fibrosis (CF). Very little is known about the mechanisms by which B. cenocepacia causes disease, but chronic infection of the airways in CF patients may be associated, at least in part, with the ability of this bacterium to survive within epithelial cells and macrophages. Survival in macrophages occurs in a membrane-bound compartment that is distinct from the lysosome, suggesting that B. cenocepacia prevents phagolysosomal fusion. In a previous study, we employed signature-tagged mutagenesis and an agar bead model of chronic pulmonary infection in rats to identify B. cenocepacia genes that are required for bacterial survival in vivo. One of the most significantly attenuated mutants had an insertion in the mgtC gene. Here, we show that mgtC is also needed for growth of B. cenocepacia in magnesium-depleted medium and for bacterial survival within murine macrophages. Using fluorescence microscopy, we demonstrated that B. cenocepacia mgtC mutants, unlike the parental isolate, colocalize with the fluorescent acidotropic probe LysoTracker Red. At 4 h postinfection, mgtC mutants expressing monomeric red fluorescent protein cannot retain this protein within the bacterial cytoplasm. Together, these results demonstrate that, unlike the parental strain, an mgtC mutant does not induce a delay in phagolysosomal fusion and the bacterium-containing vacuoles are rapidly targeted to the lysosome, where bacteria are destroyed.
Resumo:
We have previously demonstrated that isolates of the Burkholderia cepacia complex can survive intracellularly in murine macrophages and in free-living Acanthamoeba. In this work, we show that the clinical isolates B. vietnamiensis strain CEP040 and B. cenocepacia H111 survived but did not replicate within vacuoles of A. polyphaga. B. cepacia-containing vacuoles accumulated the fluid phase marker Lysosensor Blue and displayed strong blue fluorescence, indicating that they had low pH. In contrast, the majority of intracellular bacteria within amoebae treated with the V-ATPse inhibitor bafilomycin A1 localized in vacuoles that did not fluoresce with Lysosensor Blue. Experiments using bacteria fluorescently labelled with chloromethylfluorescein diacetate demonstrated that intracellular bacteria remained viable for at least 24 h. In contrast, Escherichia coli did not survive within amoebae after 2 h post infection. Furthermore, intracellular B. vietnamiensis CEP040 retained green fluorescent protein within the bacterial cytoplasm, while this protein rapidly escaped from the cytosol of phagocytized heat-killed bacteria into the vacuolar lumen. Transmission electron microscopy analysis confirmed that intracellular Burkholderia cells were structurally intact. In addition, both Legionella pneumophila- and B. vietnamiensis-containing vacuoles did not accumulate cationized ferritin, a compound that localizes within the lysosome. Thus, our observations support the notion that B. cepacia complex isolates can use amoebae as a reservoir in the environment by surviving without intracellular replication within an acidic vacuole that is distinct from the lysosomal compartment.
Resumo:
Purpose:This study documents the frequency of insulin-like growth factor-II (IGF-II) loss of imprinting (LOI) in a series of 87 bladder tissues. E-cadherin (CDH1) immunolocalization was also investigated due to the known redistribution of this adherence protein to the cytoplasm following exogenous exposure to IGF-II.
Experimental Design: Informative IGF-II cases were identified following DNA-PCR amplification and subsequent sequencing of the transcribable ApaI RFLP in exon 9 of IGF-II. Similar approaches using primer-specific cDNA templates identified the imprinting status of IGF-II in these informative cases. CDH1cellular localization was assessed on a tissue microarray platform of 114 urothelial carcinoma of the bladder (UCB) cases (70 pTanoninvasive and 44 pT1laminapropria invasive) using the commercially available Novocastra antibody.
Results: IGF-IILOI was evident in 7 of17 (41%) UCB tumors and 4 of11 (36%) tumor-associated normal urothelial samples.Two of four pT1grade 3 tumors, the subject of much debate concerning their suitability for radical cystectomy, showed LOI at the IGF-II locus. In those tumors showing IGF-II LOI, 4 of 7 (57%) displayed concomitant CDH1cytoplasmic staining. In contrast, only 3 of 10 (30%) IGF-IImaintenance ofimprinting tumorshad concomitant CDH1cytoplasmiclocalization. UCB cell lines displaying cytoplasmic CDH1immunolocalization expressed significantly higher levels of IGF-II (CAL29, HT1376, and RT112) compared with RT4, a cell line displaying crisp membranous CDH1staining. Finally, cytoplasmic CDH1staining was an independent predictor of a shorter time to recurrence independent of tumor grade and stage.
Conclusions: We suggest that CDH1 cytoplasmic immunolocalization as a result of increased IGF-II levels identifies those nonmuscle invasive presentations most likely to recur and therefore might benefit from more radical nonconserving bladder surgery
Resumo:
Secretory leucoprotease inhibitor (SLPI) is a nonglycosylated protein produced by epithelial cells. In addition to its antiprotease activity, SLPI has been shown to exhibit antiinflammatory properties, including down-regulation of tumor necrosis factor alpha expression by lipopolysaccharide (LPS) in macrophages and inhibition of nuclear factor (NF)-kappaB activation in a rat model of acute lung injury. We have previously shown that SLPI can inhibit LPS-induced NF-kappaB activation in monocytic cells by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. Here, we present evidence to show that upon incubation with peripheral blood monocytes (PBMs) and the U937 monocytic cell line, SLPI enters the cells, becoming rapidly localized to the cytoplasm and nucleus, and affects NF-kappaB activation by binding directly to NF-kappaB binding sites in a site-specific manner. SLPI can also prevent p65 interaction with the NF-kappaB consensus region at concentrations commensurate with the physiological nuclear levels of SLPI and p65. We also demonstrate the presence of SLPI in nuclear fractions of PBMs and alveolar macrophages from individuals with cystic fibrosis and community-acquired pneumonia. Therefore, SLPI inhibition of NF-kappaB activation is mediated, in part, by competitive binding to the NF-kappaB consensus-binding site.
Resumo:
Most bacterial pathogens are resistant to cationic antimicrobial peptides (CAMPs) that are key components of the innate immunity of both vertebrates and invertebrates. In Gram-negative bacteria, the known CAMPs resistance mechanisms involve outer membrane (OM) modifications and specifically those in the lipopolysaccharide (LPS) molecule. Here we report, the characterization of a novel CAMPs resistance mechanism present in Yersinia that is dependent on an efflux pump/potassium antiporter system formed by the RosA and RosB proteins. The RosA/RosB system is activated by a temperature shift to 37 degrees C, but is also induced by the presence of the CAMPs, such as polymyxin B. This is the first report of a CAMPs resistance system that is induced by the presence of CAMPs. It is proposed that the RosA/RosB system protects the bacteria by both acidifying the cytoplasm to prevent the CAMPs action and pumping the CAMPs out of the cell.
Resumo:
A finite element model of a single cell was created and used to investigate the effects of ageing on biophysical stimuli generated within a cell. Major cellular components were incorporated in the model: the membrane, cytoplasm, nucleus, microtubules, actin filaments, intermediate filaments, nuclear lamina, and chromatin. The model used multiple sets of tensegrity structures. Viscoelastic properties were assigned to the continuum components. To corroborate the model, a simulation of Atomic Force Microscopy (AFM) indentation was performed and results showed a force/indentation simulation with the range of experimental results.
Ageing was simulated by both increasing membrane stiffness (thereby modelling membrane peroxidation with age) and decreasing density of cytoskeletal elements (thereby modelling reduced actin density with age). Comparing normal and aged cells under indentation predicts that aged cells have a lower membrane area subjected to high strain compared to young cells, but the difference, surprisingly, is very small and would not be measurable experimentally. Ageing is predicted to have more significant effect on strain deep in the nucleus. These results show that computation of biophysical stimuli within cells are achievable with single-cell computational models whose force/displacement behaviour is within experimentally observed ranges. the models suggest only small, though possibly physiologically-significant, differences in internal biophysical stimuli between normal and aged cells.
Resumo:
A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.
Resumo:
Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.
Resumo:
In the summer of 1990 an epizootic infection caused by a morbillivirus (DMV) killed several thousand striped dolphins (Stenella coeruleoalba) in the Mediterranean Sea. In 1991 and 1992 the epizootic reached Italian and Greek waters. The infection by DMV in the acute period of the epizootic caused encephalitis, pneumonia and depletion of lymph nodes. After 1990, the systemic infection apparently disappeared from the Catalonian coast, giving way to cases of chronic infection of the CNS. Dolphins that died between 1991 and May 1994 were necropsied, and investigated for lesions due to DMV, and for the presence of morbillivirus antigen in tissues. Encephalitis occurred in 6 dolphins in which DMV antigen was demonstrated in the CNS and which were without lesions or antigen in other, non-nervous tissues. Inflammatory lesions, gliosis, and DMV antigen decreased in density and amount from cerebral grey matter, through the thalamic areas to the medulla oblongata. The cerebellum was usually spared. Lesions consisted of non-suppurative encephalitis, with diffuse gliosis and glial nodules and neuronophagia, and loss of neurons. Perivascular cuffing of lymphocytes and plasma cells was present in the cerebral cortex and the white matter beneath the cortex. Multinucleate syncytia were not detected in any of the dolphins. The haemagglutinin of DMV was detected mainly in neurons in the cerebral cortical areas. There was no clear relationship between the presence and amount of DMV antigen and the density or chronicity of lesions. Viral inclusions were seen in haematoxylin and eosin stained sections in 3/6 dolphins, principally in the nucleus and the cytoplasm of neurons. In the immunoperoxidase stained sections, dense granular deposits of chromogen, similar to viral inclusions, were evident in all 6 dolphins. The change in the distribution of lesions and of DMV antigen, from systemic to localized in the CNS, and the clustering of systemic DMV infections in the first four months of the epizootic, giving rise to sporadic occurrence of local CNS infection in the subsequent four years, as well as the chronic nature of the CNS lesions, which closely resembles subacute sclerosing panencephalitis, strongly support the existence of a chronic morbillivirus infection in the striped dolphin, as a delayed consequence of the 1990 epizootic.
Resumo:
Monoclonal antibodies have been prepared against purified pachytene cells from grasshopper testes. Immunoblotting and immunofluorescence analyses identified those monoclonal antibodies which showed specificity for antigens in pachytene cells. Several antigenic changes were found to be associated with meiotic cells. Five monoclonal antibodies detected antigens which were located in the cytoplasm of premeiotic cells but were nuclear during meiosis. One monoclonal antibody showed a discrete cytoplasmic fluorescent pattern in meiotic, but not in premeiotic, cells. Another bound specifically to the nuclei of some epithelial cells at the base of follicles in mature testes.