34 resultados para Condomínio vertical
Resumo:
The influence of masonry infills on the in-plane behaviour of RC framed structures is a central topic in the seismic evaluation and retrofitting of existing buildings. Many models in the literature use an equivalent strut member in order to represent the infill but, among the parameters influencing the equivalent strut behaviour, the effect of vertical loads acting on the frames is recognized but not quantified. Nevertheless a vertical load causes a non-negligible variation in the in-plane behaviour of infilled frames by influencing the effective volume of the infill. This results in a change in the stiffness and strength of the system. This paper presents an equivalent diagonal pin-jointed strut model taking into account the stiffening effect of vertical loads on the infill in the initial state. The in-plane stiffness of a range of infilled frames was evaluated using a finite element model of the frame-infill system and the cross-section of the strut equivalent to the infill was obtained for different levels of vertical loading by imposing the equivalence between the frame containing the infill and the frame containing the diagonal strut. In this way a law for identifying the equivalent strut width depending on the geometrical and mechanical characteristics of the infilled frame was generalized to consider the influence of vertical loads for use in the practical applications. The strategy presented, limited to the initial stiffness of infilled frames, is preparatory to the definition of complete non-linear cyclic laws for the equivalent strut.
Resumo:
The accurate definition of the extreme wave loads which act on offshore structures represents a significant challenge for design engineers and even with decades of empirical data to base designs upon there are still failures attributed to wave loading. The environmental conditions which cause these loads are infrequent and highly non-linear which means that they are not well understood or simple to describe. If the structure is large enough to affect the incident wave significantly further non-linear effects can influence the loading. Moreover if the structure is floating and excited by the wave field then its responses, which are also likely to be highly non-linear, must be included in the analysis. This makes the description of the loading on such a structure difficult to determine and the design codes will often suggest employing various tools including small scale experiments, numerical and analytical methods, as well as empirical data if available.
Wave Energy Converters (WECs) are a new class of offshore structure which pose new design challenges, lacking the design codes and empirical data found in other industries. These machines are located in highly exposed and energetic sites, designed to be excited by the waves and will be expected to withstand extreme conditions over their 25 year design life. One such WEC is being developed by Aquamarine Power Ltd and is called Oyster. Oyster is a buoyant flap which is hinged close to the seabed, in water depths of 10 to 15m, piercing the water surface. The flap is driven back and forth by the action of the waves and this mechanical energy is then converted to electricity.
It has been identified in previous experiments that Oyster is not only subject to wave impacts but it occasionally slams into the water surface with high angular velocity. This slamming effect has been identified as an extreme load case and work is ongoing to describe it in terms of the pressure exerted on the outer skin and the transfer of this short duration impulsive load through various parts of the structure.
This paper describes a series of 40th scale experiments undertaken to investigate the pressure on the face of the flap during the slamming event. A vertical array of pressure sensors are used to measure the pressure exerted on the flap. Characteristics of the slam pressure such as the rise time, magnitude, spatial distribution and temporal evolution are revealed. Similarities are drawn between this slamming phenomenon and the classical water entry problems, such as ship hull slamming. With this similitude identified, common analytical tools are used to predict the slam pressure which is compared to that measured in the experiment.
Resumo:
Drawing on ethnographic data collected while working as a deckhand on two Scottish trawlers, this article analyses the spatialisation of social, religious and economic inequalities that marked relations between crew members while they hunted for prawns in the North Sea. Moreover, it explores these inequalities as a wider feature of life in Gamrie, Aberdeenshire, a Brethren and Presbyterian fishing village riven by disparities in wealth and religion. Inequalities identified by fishermen at sea mirrored those identified by residents onshore, resulting in fishing boats being experienced as small 'floating villages'. Drawing on the work of Rodney Needham, this article suggests that these asymmetries can be traced along a vertical axis, with greater to lesser wealth and religiosity moving from top/above to bottom/below. The article seeks to understand the presence and persistence of these hierarchies at sea and on land, by revisiting dual classification within anthropological theory.