69 resultados para Colonic contractility
Resumo:
A major goal of molecular biology is to elucidate the mechanisms underlying cancer development and progression in order to achieve early detection, better diagnosis and staging and novel preventive and therapeutic strategies. We feel that an understanding of Runt-related transcription factor 3 (RUNX3)-regulated biological pathways will directly impact our knowledge of these areas of human carcinogenesis. The RUNX3 transcription factor is a downstream effector of the transforming growth factor-beta (TGF-beta) signaling pathway, and has a critical role in the regulation of cell proliferation and cell death by apoptosis, and in angiogenesis, cell adhesion and invasion. We previously identified RUNX3 as a major gastric tumor suppressor by establishing a causal relationship between loss of function and gastric carcinogenesis. More recently, we showed that RUNX3 functions as a bona fide initiator of colonic carcinogenesis by linking the Wnt oncogenic and TGF-beta tumor suppressive pathways. Apart from gastric and colorectal cancers. a multitude of epithelial cancers exhibit inactivation of RUNX3, thereby making it a putative tumor suppressor in human neoplasia. This review highlights our current understanding of the molecular mechanisms of RUNX3 inactivation in the context of cancer development and progression. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report a case of testicular metastasis from a colonic adenocarcinoma. The presentation of testicular metastasis, diagnosis, management, and possible modes of spread are reported. In addition to conventional investigations and histopathologic techniques, a molecular study of the testicular metastasis and colon primary, using microsatellite analysis, was performed to confirm the primary origin. Its potential uses are discussed.
Resumo:
Examination of cytological samples of cancer to suggest a possible primary site of origin is one of the commonest and most difficult tasks of diagnostic cytopathologists. Currently, both cytomorphology and immunocytochemistry are the main approaches to this diagnostic dilemma. We report the application of microsatellite analysis in cytological samples in a patient with a primary colonic tumour and two subsequent lung nodules, which were suspected on CT scans of the chest, and compared the findings with those obtained with conventional immunocytochemistry. The molecular results were in agreement with the radiological impression and conflicted with the immunocytochemistry. We conclude that immunocytochemical and molecular biology approaches to the diagnosis of tumours may give rise to contradictory results.
Resumo:
The critical involvement of TGF-beta 1 (transforming growth factor-beta 1) in DN (diabetic nephropathy) is well established. However, the role of CTGF (connective tissue growth factor) in regulating the complex interplay of TGF-beta 1 signalling networks is poorly understood. The purpose of the present study was to investigate co-operative signalling between CTGF and TGF-beta 1 and its physiological significance. CTGF was determined to bind directly to the T beta RIII (TGF-beta type III receptor) and antagonize TGF-beta 1-induced Smad phosphorylation and transcriptional responses via its N-terminal half. Furthermore, TGF-beta 1 binding to its receptor was inhibited by CTGF. A consequent shift towards non-canonical TGF-beta 1 signalling and expression of a unique profile of differentially regulated genes was observed in CTGF/TGF-beta 1-treated mesangial cells. Decreased levels of Smad2/3 phosphorylation were evident in STZ (streptozotocin)-induced diabetic mice, concomitant with increased levels of CTGF Knockdown of T beta RIII restored TGF-beta 1-mediated Smad signalling and cell contractility, suggesting that T beta RIII is key for CTGF-mediated regulation of TGF-beta 1. Comparison of gene expression profiles from CTGF/TGF-beta 1-treated mesangial cells and human renal biopsy material with histological diagnosis of DN revealed significant correlation among gene clusters. In summary, mesangial cell responses to TGF-beta 1 are regulated by cross-talk with CTGF, emphasizing the potential utility of targeting CTGF in DN.
Resumo:
Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4ß by µ-opioid receptors. ML204 inhibited TRPC4ß-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 µm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4ß currents activated through either µ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTP?S), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 µm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTP?S, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.
Resumo:
The actions of known platyhelminth FaRPs on the contractility of whole-worm preparations of the monogenean, Diclidophora merlangi have been examined in vitro for the first time. All of the peptides tested had excitatory effects on the motor activity of the worm. The order of potency for the peptides tested was: YIRFamide > GYIRFamide = RYIRFamide > GNFFRFamide = FLRFamide. However, although YIRFamide was more potent than GYIRFamide, the latter was the most efficacious on each of the motility parameters (tension, contraction amplitude and contraction frequency) examined at concentrations greater than or equal to 0.1 mu M. Serotonin, which stimulates contractility in the worm was used as a positive control. The excitatory activity of turbellarian and cestode neuropeptides on a monogenean indicates at least some structural similarities in the neuropeptide receptors of these classes of flatworm.
Resumo:
A novel FMRFamide-related heptapeptide, Lys-Pro-Asn-Phe-Ile-Arg-Phe-NH2 (KPNFIRFamide), was isolated and characterized from acid ethanol extracts of the free-living nematode, Panagrellus redivivus. Whole-worm extracts contained greater than or equal to 9 pmol KPNFIRFamide/g wet weight. A synthetic replicate of this peptide induced a rapid relaxation of tone and inhibited spontaneous contractility in isolated innervated and denervated body-wall muscle strips of the parasitic nematode, Ascaris suum. KPNFIRFamide (0.1 nM) induced measurable relaxations in 50% of the muscle preparations examined. Concentrations greater than or equal to 0.3 nM induced relaxation in 100% of muscle preparations examined. The relaxation was short-lived at concentrations of peptide greater than or equal to 1 mu M and displayed a profile typical of receptor desensitization. These data suggest the occurrence of a closely related peptide in A. suum and add further evidence to the concept of primary structural conservation of FaRPs within the nematodes.
Resumo:
Published work has shown that endothelin-l-induced contractility of bovine retinal pericytes is reduced after culture in high concentrations of glucose. The purpose of the present study was to establish the profile of endothelin-l-induced calcium transients in pericytes and to identify changes occurring after culture in high concentrations of glucose. Glucose had no effect on basal levels of cytosolic calcium or on endothelin-l-induced calcium release from intracellular stores. However, influx of calcium from the extracellular medium after endothelin-l stimulation was reduced in pericytes that had been cultured in 25 mM D-glucose. L-type Ca2+ currents were identified by patch clamping. The L-type Ca2+ channel agonist, (-)-Bay K8644, caused less influx of calcium from the extracellular medium in pericytes that had been cultured in 25 mM D-glucose than in those cultured with 5 mM D-glucose. However, 3-O-methylglucose, a nonmetabolizable analogue of glucose which can cause glycation, had similar effects to those of high concentrations of glucose. The results suggest that reduced function of the L-type Ca2+ channel that occurs in bovine retinal pericytes after culture in high concentrations of D-glucose is probably due to glycation of a channel protein.
Resumo:
The effect of simulated hyperglycaemia on bovine retinal pericytes was studied following culture of these cells for 10 days under normal (5 mmol/l) and elevated (25 mmol/l) glucose conditions in the absence of endothelial cells. Pericytes cultured under high ambient glucose exhibited both a delayed and reduced contractile response following stimulation with endothelin-1. Stimulation with 10(-7) mol/l endothelin-1 for 30 s caused significant contraction in cells grown in both 5 mmol/l and 25 mmol/l glucose. The former also contracted significantly with 10(-8) mol/l endothelin-1. Further, at all concentrations tested, statistical comparison of the time course of contraction showed a significant difference (p 0.1) between bovine retinal pericytes grown for 10 days under normo- or hyperglycaemic conditions, it became apparent that the altered contractility in bovine retinal pericytes following culture in high glucose must be due to post-binding intracellular disturbance(s). Indeed, both basal and 15 s post-stimulation with 10(-8) mol/l endothelin-1, levels of inositol trisphosphate were significantly reduced (p
Resumo:
Shigella flexneri causes bacillary dysentery in humans. Essential to the establishment of the disease is the invasion of the colonic epithelial cells. Here we investigated the role of the lipopolysaccharide (LPS) O antigen in the ability of S. flexaeri to adhere to and invade polarized Caco-2 cells. The S. flexneri 2a O antigen has two preferred chain lengths: a short O antigen (S-OAg) regulated by the WzzB protein and a very long O antigen (VL-OAg) regulated by Wzz(pHS2). Mutants with defined deletions of the genes required for O-antigen assembly and polymerization were constructed and assayed for their abilities to adhere to and enter cultured epithelial cells. The results show that both VL- and S-OAg are required for invasion through the basolateral cell membrane. In contrast, the absence of O antigen does not impair adhesion. Purified LPS does not act as a competitor for the invasion of Caco-2 cells by the wild-type strain, suggesting that LPS is not directly involved in the internalization process by epithelial cells.
Resumo:
Factors such as poor bowel preparation or obstructing colonic disease may confound the reporting of colonoscopy completion rates, as these factors are outside of the control of the endoscopist performing the procedure. By adjusting for these factors when calculating a colonoscopy completion rate, it may be possible to make a more accurate assessment of a unit's or individuals' competence. Details of two thousand two hundred and sixteen colonoscopies performed by four consultants and their trainees between 1993-2000 were analysed retrospectively from a prospective endoscopy database. Crude (all cases) and adjusted (excluding poor bowel preparation and disease as causes of incompletion) rates were recorded for each sex, and by age according to cause. Overall crude and adjusted completion rates were 77.9% and 85.0% respectively. There was a significant difference between male and female completion rates due to a difference in the incidence of excess looping and intolerance of the procedure (adjusted rate 88.9% in males vs. 81.6% in females, p
Resumo:
Few patients with Behçet's syndrome have gastrointestinal ulceration. Such patients are difficult to treat and have a higher mortality. Faced with refractory symptoms in two patients with intestinal Behçet's, we used the tumour necrosis factor alpha (TNF-alpha) monoclonal antibody infliximab to induce remission. Both women (one aged 27 years, the other 30 years) presented with orogenital ulceration, pustular rash, abdominal pain, bloody diarrhoea due to colonic ulceration, weight loss, and synovitis. One had thrombophlebitis, digital vasculitis, perianal fistula, and paracolic abscess; the other had conjunctivitis and an ulcer in the natal cleft. Treatment with prednisolone, methyl prednisolone, and thalidomide in one and prednisolone, colchicine, and cyclosporin in the other was ineffective. After full discussion, infliximab (3 mg/kg, dose reduced because of recent sepsis in one, and 5 mg/kg in the other) was administered. Within 10 days the ulcers healed, with resolution of bloody diarrhoea and all extraintestinal manifestations. A second infusion of infliximab was necessary eight weeks later in one case, followed by sustained (>15 months) remission on low dose thalidomide. Remission was initially sustained for 12 months in the other but thalidomide had to be stopped due to intolerance, and a good response to retreatment lasted only 12 weeks without immunosuppression, before a third infusion. The cause of Behçet's syndrome is unknown but peripheral blood CD45 gammadelta T cells in Behçet's produce >50-fold more TNF-alpha than controls when stimulated with phorbol myristate acetate and anti-CD3. Infliximab could have a role for inducing remission in Behçet's syndrome.
Resumo:
Background: Clinical and experimental studies suggest that the probiotic mixture VSL#3 has protective activities in the context of inflammatory bowel disease (IBD). The aim of the study was to reveal bacterial strain-specific molecular mechanisms underlying the anti-inflammatory potential of VSL#3 in intestinal epithelial cells (IEC).
Methodology/Principal Findings: VSL#3 inhibited TNF-induced secretion of the T-cell chemokine interferon-inducible protein (IP-10) in Mode-K cells. Lactobacillus casei (L. casei) cell surface proteins were identified as active anti-inflammatory components of VSL#3. Interestingly, L. casei failed to block TNF-induced IP-10 promoter activity or IP-10 gene transcription at the mRNA expression level but completely inhibited IP-10 protein secretion as well as IP-10-mediated T-cell transmigration. Kinetic studies, pulse-chase experiments and the use of a pharmacological inhibitor for the export machinery (brefeldin A) showed that L. casei did not impair initial IP-10 production but decreased intracellular IP-10 protein stability as a result of blocked IP-10 secretion. Although L. casei induced IP-10 ubiquitination, the inhibition of proteasomal or lysosomal degradation did not prevent the loss of intracellular IP-10. Most important for the mechanistic understanding, the inhibition of vesicular trafficking by 3-methyladenine (3-MA) inhibited IP-10 but not IL-6 expression, mimicking the inhibitory effects of L. casei. These findings suggest that L. casei impairs vesicular pathways important for the secretion of IP-10, followed by subsequent degradation of the proinflammatory chemokine. Feeding studies in TNF Delta ARE and IL-10(-/-) mice revealed a compartimentalized protection of VSL#3 on the development of cecal but not on ileal or colonic inflammation. Consistent with reduced tissue pathology in IL-10(-/-) mice, IP-10 protein expression was reduced in primary epithelial cells.
Conclusions/Significance: We demonstrate segment specific effects of probiotic intervention that correlate with reduced IP-10 protein expression in the native epithelium. Furthermore, we revealed post-translational degradation of IP-10 protein in IEC to be the molecular mechanism underlying the anti-inflammatory effect.
Resumo:
OBJECTIVES: The gastrointestinal microbiota is considered important in inflammatory bowel disease (IBD) pathogenesis. Discoveries from established disease cohorts report reduced bacterial diversity, changes in bacterial composition, and a protective role for Faecalibacterium prausnitzii in Crohn's disease (CD). The majority of studies to date are however potentially confounded by the effect of treatment and a reliance on established rather than de-novo disease.
METHODS: Microbial changes at diagnosis were examined by biopsying the colonic mucosa of 37 children: 25 with newly presenting, untreated IBD with active colitis (13 CD and 12 ulcerative colitis (UC)), and 12 pediatric controls with a macroscopically and microscopically normal colon. We utilized a dual-methodology approach with pyrosequencing (threshold >10,000 reads) and confirmatory real-time PCR (RT-PCR).
RESULTS: Threshold pyrosequencing output was obtained on 34 subjects (11 CD, 11 UC, 12 controls). No significant changes were noted at phylum level among the Bacteroidetes, Firmicutes, or Proteobacteria. A significant reduction in bacterial alpha-diversity was noted in CD vs. controls by three methods (Shannon, Simpson, and phylogenetic diversity) but not in UC vs. controls. An increase in Faecalibacterium was observed in CD compared with controls by pyrosequencing (mean 16.7% vs. 9.1% of reads, P = 0.02) and replicated by specific F. prausnitzii RT-PCR (36.0% vs. 19.0% of total bacteria, P = 0.02). No disease-specific clustering was evident on principal components analysis.
CONCLUSIONS: Our results offer a comprehensive examination of the IBD mucosal microbiota at diagnosis, unaffected by therapeutic confounders or changes over time. Our results challenge the current model of a protective role for F. prausnitzii in CD, suggesting a more dynamic role for this organism than previously described.
Resumo:
Background and Purpose: The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility.
Experimental Approach: KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors.
Key Results: KCNQ subtypes 1-5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20M) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity.
Conclusions and Implications: These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder.