102 resultados para Clark, Orman
Resumo:
The emission characteristics of intense laser driven protons are controlled using ultrastrong (of the order of 10(9) V/m) electrostatic fields varying on a few ps time scale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.
Resumo:
Extremely low-frequency electromagnetic fields (ELF-EMF) have been reported to induce lesions in DNA and to enhance the mutagenicity of ionising radiation. However, the significance of these findings is uncertain because the determination of the carcinogenic potential of EMFs has largely been based on investigations of large chromosomal aberrations. Using a more sensitive method of detecting DNA damage involving microsatellite sequences, we observed that exposure of UVW human glioma cells to ELF-EMF alone at a field strength of 1 mT (50 Hz) for 12 h gave rise to 0.011 mutations/locus/cell. This was equivalent to a 3.75-fold increase in mutation induction compared with unexposed controls. Furthermore, ELF-EMF increased the mutagenic capacity of 0.3 and 3 Gy gamma-irradiation by factors of 2.6 and 2.75, respectively. These results suggest not only that ELF-EMF is mutagenic as a single agent but also that it can potentiate the mutagenicity of ionising radiation. Treatment with 0.3 Gy induced more than 10 times more mutations per unit dose than irradiation with 3 Gy, indicating hypermutability at low dose.
Resumo:
PURPOSE:
Treatment options for older patients with acute myeloid leukemia (AML) who are not considered suitable for intensive chemotherapy are limited. We assessed the second-generation purine nucleoside analog, clofarabine, in two similar phase II studies in this group of patients.
PATIENTS AND METHODS:
Two consecutive studies, UWCM-001 and BIOV-121, recruited untreated older patients with AML to receive up to four or six 5-day courses of clofarabine. Patients in UWCM-001 were either older than 70 years or 60 to 69 years of age with poor performance status (WHO > 2) or with cardiac comorbidity. Patients in BIOV-121 were >or= 65 years of age and deemed unsuitable for intensive chemotherapy.
RESULTS:
A total of 106 patients were treated in the two monotherapy studies. Median age was 71 years (range, 60 to 84 years), 30% had adverse-risk cytogenetics, and 36% had a WHO performance score >or= 2. Forty-eight percent had a complete response (32% complete remission, 16% complete remission with incomplete peripheral blood count recovery), and 18% died within 30 days. Interestingly, response and overall survival were not inferior in the adverse cytogenetic risk group. The safety profile of clofarabine in these elderly patients with AML who were unsuitable for intensive chemotherapy was manageable and typical of a cytotoxic agent in patients with acute leukemia. Patients had similar prognostic characteristics to matched patients treated with low-dose cytarabine in the United Kingdom AML14 trial, but had significantly superior response and overall survival.
CONCLUSION:
Clofarabine is active and generally well tolerated in this patient group. It is worthy of further evaluation in comparative trials and might be of particular use in patients with adverse cytogenetics.
Resumo:
Comparison of the complete genome sequence of Bacteroides fragilis 638R, originally isolated in the USA, was made with two previously sequenced strains isolated in the UK (NCTC 9343) and Japan (YCH46). The presence of 10 loci containing genes associated with polysaccharide (PS) biosynthesis, each including a putative Wzx flippase and Wzy polymerase, was confirmed in all three strains, despite a lack of cross-reactivity between NCTC 9343 and 638R surface PS-specific antibodies by immunolabelling and microscopy. Genomic comparisons revealed an exceptional level of PS biosynthesis locus diversity. Of the 10 divergent PS-associated loci apparent in each strain, none is similar between NCTC 9343 and 638R. YCH46 shares one locus with NCTC 9343, confirmed by mAb labelling, and a second different locus with 638R, making a total of 28 divergent PS biosynthesis loci amongst the three strains. The lack of expression of the phase-variable large capsule (LC) in strain 638R, observed in NCTC 9343, is likely to be due to a point mutation that generates a stop codon within a putative initiating glycosyltransferase, necessary for the expression of the LC in NCTC 9343. Other major sequence differences were observed to arise from different numbers and variety of inserted extra-chromosomal elements, in particular prophages. Extensive horizontal gene transfer has occurred within these strains, despite the presence of a significant number of divergent DNA restriction and modification systems that act to prevent acquisition of foreign DNA. The level of amongst-strain diversity in PS biosynthesis loci is unprecedented.
Resumo:
PURPOSE: Retinitis pigmentosa (RP) causes hereditary blindness in adults (prevalence, approximately 1 in 4000). Each of the more than 30 causative genes identified to date are responsible for only a small percentage of cases. Genetic diagnosis via traditional methods is problematic, and a single test with a higher probability of detecting the causative mutation would be very beneficial for the clinician. The goal of this study therefore was to develop a high-throughput screen capable of detecting both known mutations and novel mutations within all genes implicated in autosomal recessive or simplex RP. DESIGN: Evaluation of diagnostic technology. PARTICIPANTS AND CONTROLS: Participants were 56 simplex and autosomal recessive RP patients, with 360 population controls unscreened for ophthalmic disease. METHODS: A custom genechip capable of resequencing all exons containing known mutations in 19 disease-associated genes was developed (RP genechip). A second, commercially available arrayed primer extension (APEX) system was used to screen 501 individual previously reported variants. The ability of these high-throughput approaches to identify pathogenic variants was assessed in a cohort of simplex and autosomal recessive RP patients. MAIN OUTCOME MEASURES: Number of mutations and potentially pathogenic variants identified. RESULTS: The RP genechip identified 44 sequence variants: 5 previously reported mutations; 22 known single nucleotide polymorphisms (SNPs); 11 novel, potentially pathogenic variants; and 6 novel SNPs. There was strong concordance with the APEX array, but only the RP genechip detected novel variants. For example, identification of a novel mutation in CRB1 revealed a patient, who also had a single previously known CRB1 mutation, to be a compound heterozygote. In some individuals, potentially pathogenic variants were discovered in more than one gene, consistent with the existence of disease modifier effects resulting from mutations at a second locus. CONCLUSIONS: The RP genechip provides the significant advantage of detecting novel variants and could be expected to detect at least one pathogenic variant in more than 50% of patients. The APEX array provides a reliable method to detect known pathogenic variants in autosomal recessive RP and simplex RP patients and is commercially available. High-throughput genotyping for RP is evolving into a clinically useful genetic diagnostic tool.