112 resultados para Cibber, Theophilus, 1703-1758.
Resumo:
American lobsters (Homarus americanus H. Milne Edwards, 1837) are imported live to Europe and should according regulations be kept in land-based tanks until sold. In spite of the strict regulations aimed specifically at preventing the introduction of this species into the NE Atlantic, several specimens of H. americanus have been captured in the wild, especially in Oslofjord, Norway since 1999. One of the great concerns is interbreeding between the introduced American species and the local European lobster, H. gammarus (Linnaeus, 1758). For this reason an awareness campaign was launched in 2000 focusing on morphologically "unusual" lobsters caught in local waters. Morphological characters have been based on colour and sub-ventral spines on the rostrum. Two samples of H. americanus were used for comparisons, as well as samples of European lobster from Oslofjord collected in 1992. Previous genetic analyses (allozymes, mtDNA and microsatellite DNA) have demonstrated that the American lobster is distinct from its European counterpart, with several additional alleles at many loci in addition to different allelic frequency distribution of alleles of "shared" alleles. During the present study, thirteen microsatellite loci were tested in the initial screening, and the three most discriminating loci (Hgam98, Hgam197b and Hgam47b) were used in a detailed comparison between the two species. A total of 45 unusual lobsters were reported captured from Ålesund (west) to Oslofjord (southeast) from 2001 to 2005 and these were analysed for the three microsatellite loci. Nine specimens were identified as American lobsters. Comparisons between morphological and genetic characteristics revealed that morphological differences are not reliable in discrimination the two species, or to identify hybrids. Further, some loci display almost no overlapping in allele frequency distribution for the reference samples analysed, thus providing a reliable tool to identify hybrids.
Resumo:
The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.
Resumo:
This article presents a novel classification of wavelet neural networks based on the orthogonality/non-orthogonality of neurons and the type of nonlinearity employed. On the basis of this classification different network types are studied and their characteristics illustrated by means of simple one-dimensional nonlinear examples. For multidimensional problems, which are affected by the curse of dimensionality, the idea of spherical wavelet functions is considered. The behaviour of these networks is also studied for modelling of a low-dimension map.
Resumo:
This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.
Resumo:
This paper introduces a novel modelling framework for identifying dynamic models of systems that are under feedback control. These models are identified under closed-loop conditions and produce a joint representation that includes both the plant and controller models in state space form. The joint plant/controller model is identified using subspace model identification (SMI), which is followed by the separation of the plant model from the identified one. Compared to previous research, this work (i) proposes a new modelling framework for identifying closed-loop systems, (ii) introduces a generic structure to represent the controller and (iii) explains how that the new framework gives rise to a simplified determination of the plant models. In contrast, the use of the conventional modelling approach renders the separation of the plant model a difficult task. The benefits of using the new model method are demonstrated using a number of application studies.
Resumo:
The divide-and-conquer approach of local model (LM) networks is a common engineering approach to the identification of a complex nonlinear dynamical system. The global representation is obtained from the weighted sum of locally valid, simpler sub-models defined over small regions of the operating space. Constructing such networks requires the determination of appropriate partitioning and the parameters of the LMs. This paper focuses on the structural aspect of LM networks. It compares the computational requirements and performances of the Johansen and Foss (J&F) and LOLIMOT tree-construction algorithms. Several useful and important modifications to each algorithm are proposed. The modelling performances are evaluated using real data from a pilot plant of a pH neutralization process. Results show that while J&F achieves a more accurate nonlinear representation of the pH process, LOLIMOT requires significantly less computational effort.
Resumo:
This paper deals with Takagi-Sugeno (TS) fuzzy model identification of nonlinear systems using fuzzy clustering. In particular, an extended fuzzy Gustafson-Kessel (EGK) clustering algorithm, using robust competitive agglomeration (RCA), is developed for automatically constructing a TS fuzzy model from system input-output data. The EGK algorithm can automatically determine the 'optimal' number of clusters from the training data set. It is shown that the EGK approach is relatively insensitive to initialization and is less susceptible to local minima, a benefit derived from its agglomerate property. This issue is often overlooked in the current literature on nonlinear identification using conventional fuzzy clustering. Furthermore, the robust statistical concepts underlying the EGK algorithm help to alleviate the difficulty of cluster identification in the construction of a TS fuzzy model from noisy training data. A new hybrid identification strategy is then formulated, which combines the EGK algorithm with a locally weighted, least-squares method for the estimation of local sub-model parameters. The efficacy of this new approach is demonstrated through function approximation examples and also by application to the identification of an automatic voltage regulation (AVR) loop for a simulated 3 kVA laboratory micro-machine system.
Resumo:
Success rates of reintroduction programs are low, often owing to a lack of knowledge of site-specific ecological requirements. A reintroduction program of European roe deer (Capreolus capreolus (L., 1758)) in a dry Mediterranean region in Israel provides an opportunity to study the bottleneck effect of water requirements on a mesic-adapted species. Four does were hand-reared and released in a 10 ha site consisting of an early succession scrubland and a mature oak forest. We measured daily energy expenditure (DEE) and water turnover (WTO) using the doubly labeled water technique during summer and winter. DEE was similar in the summer and winter, but there was a significant difference in WTO and in the source of gained water. In winter, WTO was 3.3 L/day, of which 67% was obtained from vegetation. In summer, WTO dropped to 2.1 L/day, of which only 20% was obtained from the diet and 76% was gained from drinking. When the water source was moved to a nonpreferred habitat, drinking frequency dropped significantly, but water consumption remained constant. In a dry Mediterranean environment, availability of free water is both a physiological contraint and a behavioral constraint for roe deer. This study demonstrates the importance of physiological and behavioral feasibility studies for reintroduction programs.
Resumo:
In many domains when we have several competing classifiers available we want to synthesize them or some of them to get a more accurate classifier by a combination function. In this paper we propose a ‘class-indifferent’ method for combining classifier decisions represented by evidential structures called triplet and quartet, using Dempster's rule of combination. This method is unique in that it distinguishes important elements from the trivial ones in representing classifier decisions, makes use of more information than others in calculating the support for class labels and provides a practical way to apply the theoretically appealing Dempster–Shafer theory of evidence to the problem of ensemble learning. We present a formalism for modelling classifier decisions as triplet mass functions and we establish a range of formulae for combining these mass functions in order to arrive at a consensus decision. In addition we carry out a comparative study with the alternatives of simplet and dichotomous structure and also compare two combination methods, Dempster's rule and majority voting, over the UCI benchmark data, to demonstrate the advantage our approach offers. (A continuation of the work in this area that was published in IEEE Trans on KDE, and conferences)
Resumo:
This paper details the implementation and operational performance of a minimum-power 2.45-GHz pulse receiver and a companion on-off keyed transmitter for use in a semi-active duplex RF biomedical transponder. A 50-Ohm microstrip stub-matched zero-bias diode detector forms the heart of a body-worn receiver that has a CMOS baseband amplifier consuming 20 microamps from +3 V and achieves a tangential sensitivity of -53 dBm. The base transmitter generates 0.5 W of peak RF output power into 50 Ohms. Both linear and right-hand circularly polarized Tx-Rx antenna sets were employed in system reliability trials carried out in a hospital Coronary Care Unit, For transmitting antenna heights between 0.3 and 2.2 m above floor level, transponder interrogations were 95% reliable within the 67-m-sq area of the ward, falling to an average of 46 % in the surrounding rooms and corridors. Overall, the circular antenna set gave the higher reliability and lower propagation power decay index.
Resumo:
The cysteine protease cathepsin S (CatS) is involved in the pathogenesis of autoimmune disorders, atherosclerosis, and obesity. Therefore, it represents a promising pharmacological target for drug development. We generated ligand-based and structure-based pharmacophore models for noncovalent and covalent CatS inhibitors to perform virtual high-throughput screening of chemical databases in order to discover novel scaffolds for CatS inhibitors. An in vitro evaluation of the resulting 15 structures revealed seven CatS inhibitors with kinetic constants in the low micromolar range. These compounds can be subjected to further chemical modifications to obtain drugs for the treatment of autoimmune disorders and atherosclerosis.
Resumo:
Query processing over the Internet involving autonomous data sources is a major task in data integration. It requires the estimated costs of possible queries in order to select the best one that has the minimum cost. In this context, the cost of a query is affected by three factors: network congestion, server contention state, and complexity of the query. In this paper, we study the effects of both the network congestion and server contention state on the cost of a query. We refer to these two factors together as system contention states. We present a new approach to determining the system contention states by clustering the costs of a sample query. For each system contention state, we construct two cost formulas for unary and join queries respectively using the multiple regression process. When a new query is submitted, its system contention state is estimated first using either the time slides method or the statistical method. The cost of the query is then calculated using the corresponding cost formulas. The estimated cost of the query is further adjusted to improve its accuracy. Our experiments show that our methods can produce quite accurate cost estimates of the submitted queries to remote data sources over the Internet.
Resumo:
Karaoke singing is a popular form of entertainment in several parts of the world. Since this genre of performance attracts amateurs, the singing often has artifacts related to scale, tempo, and synchrony. We have developed an approach to correct these artifacts using cross-modal multimedia streams information. We first perform adaptive sampling on the user's rendition and then use the original singer's rendition as well as the video caption highlighting information in order to correct the pitch, tempo and the loudness. A method of analogies has been employed to perform this correction. The basic idea is to manipulate the user's rendition in a manner to make it as similar as possible to the original singing. A pre-processing step of noise removal due to feedback and huffing also helps improve the quality of the user's audio. The results are described in the paper which shows the effectiveness of this multimedia approach.
Resumo:
This paper describes the application of multivariate regression techniques to the Tennessee Eastman benchmark process for modelling and fault detection. Two methods are applied : linear partial least squares, and a nonlinear variant of this procedure using a radial basis function inner relation. The performance of the RBF networks is enhanced through the use of a recently developed training algorithm which uses quasi-Newton optimization to ensure an efficient and parsimonious network; details of this algorithm can be found in this paper. The PLS and PLS/RBF methods are then used to create on-line inferential models of delayed process measurements. As these measurements relate to the final product composition, these models suggest that on-line statistical quality control analysis should be possible for this plant. The generation of `soft sensors' for these measurements has the further effect of introducing a redundant element into the system, redundancy which can then be used to generate a fault detection and isolation scheme for these sensors. This is achieved by arranging the sensors and models in a manner comparable to the dedicated estimator scheme of Clarke et al. 1975, IEEE Trans. Pero. Elect. Sys., AES-14R, 465-473. The effectiveness of this scheme is demonstrated on a series of simulated sensor and process faults, with full detection and isolation shown to be possible for sensor malfunctions, and detection feasible in the case of process faults. Suggestions for enhancing the diagnostic capacity in the latter case are covered towards the end of the paper.