34 resultados para Celle in silicio cristallino, Riflettanza, Testurizzazione, Light trapping


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The well known advantages of using surface plasmons, in particular the high sensitivity to surface adsorbates, are nearly always compromised in practice by the use of monochromatic excitation and the consequent lack of proper spectroscopic information. This limitation arises from the angle/wavelength selective nature of the surface plasmon resonance. The work described here uses an elegant broadband excitation/decay scheme in a substrate(silica)-grating profiled photoresist-Ag film geometry. Laser radiation of wavelength 488 nm, incident through the silica substrate, excites by near-field coupling a broad band of surface plasmons at the photoresist-Ag interface within the spectral range of the photoresist fluorescence. With a judicious choice of grating period this mode can cross-couple to the mode supported at the Ag-air interface. This latter mode can, in turn, couple out to light by virtue of the same grating profile. The spectral distribution of the light emitted due to this three-step process has been studied as a function of the angle of emission and depth of the grating profiled surface for each polarization. It is found that the optimum emission efficiency occurs with a groove depth in the region of 65 nm. This is considerably greater than the optimum depth of 40 nm required for surface plasmon-photon coupling at a Ag-air interface or, in other words, for the last step of the process in isolation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply time-dependent R-matrix theory to study inner-shell ionization of C atoms in ultra-short high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 1017 W/cm2, ionization is dominated by single-photon emission of a 2l electron, with two-photon emission of a 1s electron accounting for about 2-3% of all emission processes, and two-photon emission of 2l contributing about 0.5-1%. Three-photon emission of a 1s electron is estimated to contribute about 0.01-0.03%. Around a photon energy of 225 eV, two-photon emission of a 1s electron, leaving C+ in either 1s2s2p3 or 1s2p4 is resonantly enhanced by intermediate 1s2s22p3 states. The results demonstrate the capability of time-dependent R-matrix theory to describe inner-shell ionization processes including rearrangement of the outer electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ultrathin layer of metasurface that almost completely annihilates the reflection of light (>99.5%) over a wide range of incident angles (>80°) is experimentally demonstrated. Such zero-reflectance metafilms exhibit optimal performance for plasmonic sensing, since their sensitivity to changes of local refractive index is far superior to films of nonzero reflectance. Since both main detection mechanisms tracking intensity changes and wavelength shifts are improved, zero-reflectance metafilms are optimal for localized surface plasmon resonance molecular sensing. Such nanostructures have significant opportunities in many areas, including enhanced light harvesting as well as in developing high-performance molecular sensors for a wide range of chemical and biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rotomolded containers for solvents and hydrocarbons require the use of high-permeability resins such as polyamide (PA). The published studies with this material are very scarce. In this work, a commercial grade of PA11 was rotational-molded using different processing temperatures and characterized with a range of techniques. The study aims at investigating the influence of the processing conditions on the microstructure and properties of molded parts. The results showed that the spherulitic morphology and the mechanical properties are affected by the processing temperature, the optimum processing range being between 220°C and 240°C. Overheating causes a decrease of the impact strength and a severe increase in the formation of pinholes at the outer surface due to polymer degradation and formation of volatile products. The thermo-oxidation reactions occurring at the inner surface of the samples result in the formation of products that absorb in the UV and visible light regions and cause the microhardness and the melt viscosity of the material to increase. The extent and severity of the degradation at the inner surface may be easily assessed by fluorescence microscopy. © 2008 Wiley Periodicals, Inc.