106 resultados para Cascaded Transformer, DSTATCOM, Multilevel, Resonant Controller
Resumo:
Abstract. We explore the distances between home and work for employees at twenty-eight different employment sites across Northern Ireland. Substantively, this is important for better understanding the geography of labour catchments. Methodologically, with data on the distances between place of residence (566 wards) and place of work for some 15 000 workers, and the use of multilevel modelling (MLM), the analysis adds to the evidence derived from other census-based and survey-based studies. Descriptive analysis is supplemented with MLM that simultaneously explores individual, neighbourhood, and site variations in travel-to-work patterns using hierarchical and cross-classified model specifications, including individual and ecological predictor variables (and their cross-level interactions). In doing so we apportion variability to different levels and spatial contexts, and also outline the factors that shape spatial mobility. We find, as expected, that factors such as gender and occupation influence the distance between home and work, and also confirm the importance of neighbourhood characteristics (such as population density observed in ecological analyses at ward level) in shaping individual outcomes, with major differences found between urban and rural locations. Beyond this, the analysis of variability also points to the relative significance of residential location, with less individual variability in travel-to-work distance between workers within wards than within employment sites. We conclude by suggesting that, whilst some general ‘rules’ about the factors that shape labour catchments are possible (eg workers in rural areas and in higher occupations travel further than others), the complex variability between places highlighted by the MLM analysis illustrates the salience of place-specific uniqueness.
Resumo:
Positrons can attach to molecules via vibrational Feshbach resonances, leading to very large annihilation rates. The predictions of a recent theory for this process are validated for deuterated methyl halides where all modes are dipole coupled to the incident positron. Data and analysis are presented for methanol and ethylene, demonstrating the importance of combination and overtone resonances and the ability of the theory to account for these features. The mechanism for these resonances and criteria for their occurrence as well as outstanding questions are discussed.
Resumo:
Positron annihilation in ammonia is analyzed using the framework of resonant annihilation [G. F. Gribakin and C. M. R. Lee, Phys. Rev. Lett. 97, 193201 (2006)]. In particular, we show that molecular rotations can have a measurable e?ect on the annihilation rates at room temperatures. Rotation leads to broadening of vibrational Feshbach resonances. Rotations also allow a distinct contribution at low positron energies in the form of a rotational Feshbach resonance. This resonance can enhance the annihilation rate for thermalized room-temperature positrons. Comparison of theory and experiment shows that overtone and combination vibrations, including those due to inversion doubling, likely play an important role.
Resumo:
This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment, and annihilation. Measurements of annihilation rates resolved as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFRs) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecule (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. Molecules that do not bind positrons and hence do not exhibit such resonances are discussed. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom, approximately as the fourth power of the number of atoms in the molecule. While the details are as yet unclear, intramolecular vibrational energy redistributio (IVR) to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. In connection with IVR, experimental evidence indicates that inelastic positron escape channels are relatively rare. Downshifts of the VFR from the vibrational mode energies, obtained by measuring annihilate rates as a function of incident positron energy, have provided binding energies for 30 species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding-energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecul (negative-ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed. Possible areas for future theoretical and experimental investigation are also discussed.
Resumo:
It is shown that structuring the top layers of a resonant cavity Schottky photodetector in a way that allows coupling between the wavevector of incident radiation and that of electron-collective oscillations (plasmons) at the surface of the metallic electrode leads to practically zero reflectance in the case of front illuminated devices. This is expected to result in a consequential enhancement in the quantum efficiency in these photodetectors. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A method is proposed for detecting positron-atom bound states by observing enhanced positron annihilation due to electronic Feshbach resonances at electron-volt energies. The method is applicable to a range of open-shell transition-metal atoms which are likely to bind the positron: Fe, Co, Ni, Tc, Ru, Rh, Sn, Sb, Ta, W, Os, Ir, and Pt. Estimates of their binding energies are provided.
Resumo:
This paper investigates numerical simulation of a string coupled
transversely to a resonant body. Starting from a complete nite
difference formulation, a second model is derived in which the
body is represented in modal form. The main advantage of this hybrid form is that the body model is scalable, i.e. the computational
complexity can be adjusted to the available processing power. Numerical results are calculated and discussed for simplied models
in the form of string-string coupling and string-plate coupling.
Resumo:
The majority of previous research on social capital and health is limited to social capital in residential neighborhoods and communities. Using data from the Finnish 10-Town study we examined social capital at work as a predictor of health in a cohort of 9524 initially healthy local government employees in 1522 work units, who did not change their work unit between 2000 and 2004 and responded to surveys measuring social capital at work and health at both time-points. We used a validated tool to measure social capital with perceptions at the individual level and with co-workers' responses at the work unit level. According to multilevel modeling, a contextual effect of work unit social capital on self-rated health was not accounted for by the individual's socio-demographic characteristics or lifestyle. The odds for health impairment were 1.27 times higher for employees who constantly worked in units with low social capital than for those with constantly high work unit social capital. Corresponding odds ratios for low and declining individual-level social capital varied between 1.56 and 1.78. Increasing levels of individual social capital were associated with sustained good health. In conclusion, this longitudinal multilevel study provides support for the hypothesis that exposure to low social capital at work may be detrimental to the health of employees. (c) 2007 Elsevier Ltd. All rights reserved.