268 resultados para Cardiorespiratory Responses
Resumo:
CD33-related Siglecs (sialic acid-binding immunoglobulin-like lectins) 5–11 are inhibitory receptors that contain a membrane proximal ITIM (immunoreceptor tyrosine-based inhibitory motif) (I/V/L/)XYXX(L/V), which can recruit SHP-1/2. However, little is known about the regulation of these receptors. SOCS3 (suppressor of cytokine signaling 3) is up-regulated during inflammation and competes with SHP-1/2 for binding to ITIM-like motifs on various cytokine receptors resulting in inhibition of signaling. We show that SOCS3 binds the phosphorylated ITIM of Siglec 7 and targets it for proteasomal-mediated degradation, suggesting that Siglec 7 is a novel SOCS target. Following ligation, the ECS E3 ligase is recruited by SOCS3 to target Siglec 7 for proteasomal degradation, and SOCS3 expression is decreased concomitantly. In addition, we found that SOCS3 expression blocks Siglec 7-mediated inhibition of cytokine-induced proliferation. This is the first time that a SOCS target has been reported to degrade simultaneously with the SOCS protein and that inhibitory receptors have been shown to be degraded in this way. This may be a mechanism by which the inflammatory response is potentiated during infection.
Resumo:
The observation of radiation-induced bystander responses, in which cells respond to their neighbors being irradiated, has important implications for understanding mechanisms of radiation action particularly after low-dose exposure. Much of this questions the current dogma of direct DNA damage driving response in irradiated systems. In this study, we have used a charged-particle microbeam to target individual helium ions ((3)He(2+)) to individual cells within a population of radioresistant glioma cells cultured alone or in coculture with primary human fibroblasts. We found that even when a single cell within the glioma population was precisely traversed through its cytoplasm with one (3)He(2+) ion, bystander responses were induced in the neighboring nonirradiated glioma or fibroblasts so that the yield of micronuclei was increased by 36% for the glioma population and 78% for the bystander fibroblast population. Importantly, the yield of bystander-induced micronuclei was independent of whether the cytoplasm or nucleus of a cell was targeted. The bystander responses were fully eliminated when the populations were treated with 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide or filipin, which scavenge nitric oxide (NO) and disrupt membrane rafts, respectively. By using the probe 4-amino-5-methylamino-2',7'-difluorofluorescein, it was found that the NO level in the glioma population was increased by 15% after 1 or 10 cytoplasmic traversals, and this NO production was inhibited by filipin. This finding shows that direct DNA damage is not required for switching on of important cell-signaling mechanisms after low-dose irradiation and that, under these conditions, the whole cell should be considered a sensor of radiation exposure.
Resumo:
Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers
Resumo:
Studies on the immunoglobulin (Ig)E immune responses to the gastric nematode, Teladorsagia circumcincta, have demonstrated a major high molecular weight allergen (HMWTc). Cross reactive allergens of similar MW were demonstrated for Trichostrongylus colubriformis and Cooperia curticei, but not for Haemonchus contortus. Purification of HMWTc was achieved by gel-filtration chromatography, and nonreducing SDS-PAGE and Western blot analysis revealed two closely associated bands with a molecular weight of approximately 140-150?kDa. Reduction showed four IgE reactive bands of 120, 50, 45 and 30?kDa, and deglycosylation abrogated the immunoreactivity of the 120 and 30?kDa bands. Ultrastructural immunolocalization by electron microscopy revealed that the IgE reactivity was confined to the cuticular surface of the infective (L3) larvae. ELISA studies to determine the IgE anti-HMWTc responses in lambs during their first grazing season, demonstrated significantly higher IgE antibody in lambs with low accumulative faecal egg count (FEC) compared to animals with high accumulative FEC. These studies provide evidence for a protective function of IgE antibody in Teladorsagia infections in lambs.
Resumo:
There are conflicting data in the literature regarding the role of epidermal Langerhans cells (LC) in promoting skin immune responses. On one hand, LC can be extremely potent APCs in vitro, and are thought to be involved in contact hypersensitivity (CHS). On the other hand, it seems counterintuitive that a cell type continually exposed to pathogens at the organism\'s barrier surfaces should readily trigger potent T cell responses. Indeed, LC depletion in one model led to enhanced contact hypersensitivity, suggesting they play a negative regulatory role. However, apparently similar LC depletion models did not show enhanced CHS, and in one case showed reduced CHS. In this study we found that acute depletion of mouse LC reduced CHS, but the timing of toxin administration was critical: toxin administration 3 days before priming did not impair CHS, whereas toxin administration 1 day before priming did. We also show that LC elimination reduced the T cell response to epicutaneous immunization with OVA protein Ag. However, this reduction was only observed when OVA was applied on the flank skin, and not on the ear. Additionally, peptide immunization was not blocked by depletion, regardless of the site. Finally we show that conditions which eliminate epidermal LC but spare other Langerin(+) DC do not impair the epicutaneous immunization response to OVA. Overall, our results reconcile previous conflicting data in the literature, and suggest that Langerin(+) cells do promote T cell responses to skin Ags, but only under defined conditions.