35 resultados para Capacity of Innovation
Resumo:
Cooperative MIMO (Multiple Input–Multiple Output) allows multiple nodes share their antennas to emulate antenna arrays and transmit or receive cooperatively. It has the ability to increase the capacity for future wireless communication systems and it is particularly suited for ad hoc networks. In this study, based on the transmission procedure of a typical cooperative MIMO system, we first analyze the capacity of single-hop cooperative MIMO systems, and then we derive the optimal resource allocation strategy to maximize the end-to-end capacity in multi-hop cooperative MIMO systems. The study shows three implications. First, only when the intra-cluster channel is better than the inter-cluster channel, cooperative MIMO results in a capacity increment. Second, for a given scenario there is an optimal number of cooperative nodes. For instance, in our study an optimal deployment of three cooperative nodes achieve a capacity increment of 2 bps/Hz when compared with direct transmission. Third, an optimal resource allocation strategy plays a significant role in maximizing end-to-end capacity in multi-hop cooperative MIMO systems. Numerical results show that when optimal resource allocation is applied we achieve more than 20% end-to-end capacity increment in average when compared with an equal resource allocation strategy.
The nitric oxide ISO photocatalytic reactor system: Measurement of NOx removal activity and capacity
Resumo:
Although the NO removal-based air-purification ISO method ISO 22197-1:2007 is well established, its preconditioning requirements mean that only the initial activity of the photocatalyst under test is measured owing to the often-reported, gradual alteration of the surface kinetics for NO oxidation by air through the accumulation of surface HNO3. Herein, we compare the photocatalytic NO removal abilities of a number of different, common TiO2 materials, surface-saturated with photogenerated HNO3, with their behaviours observed during the typical 5 h-long ISO standard test. It is found that all the TiO2 materials studied eventually become largely NO to NO2 converters after sufficient exposure to NO under irradiation (>5 h) due to the accumulation of surface HNO3. The UV exposure time, t*, necessary to reach this HNO3 saturated condition is different for each different catalyst. As a consequence, an alternative preconditioning process for the ISO method is proposed which can be used to provide a more realistic measure of the photocatalytic activity of the underlying material and provide a measure of the NOx removing capacity of the photocatalytic material under test.
Resumo:
For those working in the humanitarian sector, achieving positive outcomes for postdisaster communities through reconstruction projects is a pressing concern. In the wake of recent natural disasters, NGOs have become increasingly involved in the permanent reconstruction of affected communities. They have encountered significant barriers as they implement reconstruction programmes and this paper argues that it is important to address the visible lack of innovation that is partially to blame. The theoretical bedrock of a current research project will be used as the starting point for this argument, the overall goal of which is to design a competency-based framework model that can be used by NGOs in post-disaster reconstruction projects. Drawing on established theories of management, a unique perspective has been developed from which a competency-based reconstruction theory emerges. This theoretical framework brings together 3 distinct fields; Disaster Management, Strategic Management and Project Management, each vital
to the success of the model. The objectives of this paper are a) to investigate the role of NGOs in post-disaster reconstruction and establish the current standard of practice b) to determine the extent to which NGOs have the opportunity to contribute to sustainable community development through reconstruction c) to outline the main factors of a theoretical framework first proposed by Von Meding et al. 2009 and d) to identify the innovative measures that can be taken by NGOs to achieve more positive outcomes in their interventions. It is important that NGOs involved in post-disaster reconstruction become familiar with concepts and strategies such as those contained in this paper. Competency-based organizational change on the basis of this theory has the potential to help define the standard of best practice to which future NGO projects might align themselves.
Resumo:
The notion of sediment-transport capacity has been engrained in geomorphological and related literature for over 50 years, although its earliest roots date back explicitly to Gilbert in fluvial geomorphology in the 1870s and implicitly to eighteenth to nineteenth century developments in engineering. Despite cross fertilization between different process domains, there seem to have been independent inventions of the idea in aeolian geomorphology by Bagnold in the 1930s and in hillslope studies by Ellison in the 1940s. Here we review the invention and development of the idea of transport capacity in the fluvial, aeolian, coastal, hillslope, débris flow, and glacial process domains. As these various developments have occurred, different definitions have been used, which makes it both a difficult concept to test, and one that may lead to poor communications between those working in different domains of geomorphology. We argue that the original relation between the power of a flow and its ability to transport sediment can be challenged for three reasons. First, as sediment becomes entrained in a flow, the nature of the flow changes and so it is unreasonable to link the capacity of the water or wind only to the ability of the fluid to move sediment. Secondly, environmental sediment transport is complicated, and the range of processes involved in most movements means that simple relationships are unlikely to hold, not least because the movement of sediment often changes the substrate, which in turn affects the flow conditions. Thirdly, the inherently stochastic nature of sediment transport means that any capacity relationships do not scale either in time or in space. Consequently, new theories of sediment transport are needed to improve understanding and prediction and to guide measurement and management of all geomorphic systems.
Resumo:
Copper-manganese spinel containing anodes were synthesized by a facile sol-gel method and evaluated in lithium-ion battery applications for the first time. The synergistic effects between copper-manganese and the aqueous binder (sodium carboxymethyl cellulose) provided a high specific capacity and excellent cycling performance. It was found that the specific capacity of the copper-manganese spinel remained at 608 mAh g−1 after 100 cycles at a current density of 200 mA g−1. Furthermore, a relatively high reversible capacity of 278 mAh g−1 could be obtained at a current density of 2000 mA g−1, indicating a good rate capability. These studies suggest that copper-manganese spinel is a promising material for lithium-ion battery applications due to a combination of good electrochemical performance and low cost.