93 resultados para Cannabis dependence
Resumo:
When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.
Resumo:
Surface-enhanced Raman scattering (SERS) spectra from molecules adsorbed on the surface of vertically aligned gold nanorod arrays exhibit a variation in enhancement factor (EF) as a function of excitation wavelength that displays little correlation with the elastic optical properties of the surface. The key to understanding this lack of correlation and to obtaining agreement between experimental and calculated EF spectra lies with consideration of randomly distributed, sub-10 nm gaps between nanorods forming the substrate. Intense fields in these enhancement “hot spots” make a dominant contribution to the Raman scattering and have a very different spectral profile to that of the elastic optical response. Detailed modeling of the electric field enhancement at both excitation and scattering wavelengths was used to quantitatively predict both the spectral profile and the magnitude of the observed EF.
Resumo:
The experimental evidence of the correlation between the initial electron density of the plasma and electromagnetic soliton excitation at the wake of an intense (10(19) W/cm(2)) and short (1 ps) laser pulse is presented. The spatial distribution of the solitons, together with their late time evolution into post-solitons, is found to be dependent upon the background plasma parameters, in agreement with published analytical and numerical findings. The measured temporal evolution and electrostatic field distribution of the structures are consistent with their late time evolution and the occurrence of multiple merging of neighboring post-solitons. (C) 2011 American Institute of Physics. [doi:10.1063/1.3625261]
Resumo:
Gold nanoparticles (GNPs) are of considerable interest for use as a radiosensitizer, because of their biocompatibility and their ability to increase dose deposited because of their high mass energy absorption coefficient. Their sensitizing properties have been verified experimentally, but a discrepancy between the experimental results and theoretical predictions suggests that the sensitizing effect does not depend solely on gold's superior absorption of energetic photons. This work presents the results of three sets of experiments that independently mapped out the energy dependence of the radiosensitizing effects of GNPs on plasmid DNA suspended in water. Incident photon energy was varied from 11.8 to 80 keV through the use of monochromatic synchrotron and broadband X-rays. These results depart significantly from the theoretical predictions in two ways: First, the sensitization is significantly larger than would be predicted; second, it does not vary with energy as would be predicted from energy absorption coefficients. These results clearly demonstrate that the effects of GNP-enhanced therapies cannot be predicted by considering additional dose alone and that a greater understanding of the processes involved is necessary for the development of future therapeutics.
Resumo:
The initial kinetics of the oxidation of 4-chlorophenol, 4-CP, photocatalyzed by titania films and aqueous dispersions were studied as a function of oxygen partial pressure, P-O2, and incident light intensity, I. The reaction conditions were such that the kinetics were independent of [4-CP] but strongly dependent on PO2-a situation that allowed investigation of the less-often studied kinetics of oxygen reduction. The observed kinetics fit a pseudo-steady-state model in which the oxygen is Langmuir-adsorbed on the titania photocatalyst particles before being reduced by photogenerated electrons. The maximum rate of photocatalysis depends directly on I-beta, where, beta = 1 for films and 0.7 for dispersions of titania, indicating that the kinetics are dominated by the surface reactions of the photogenerated electrons and holes for the films and by direct recombination for the powder dispersions. Using the pseudo-first-order model, for both titania films and dispersions, the apparent Langmuir adsorption constant, K-LH, derived from a Langmuir-Hinshelwood analysis of the kinetics, appears to be largely independent of incident light intensity, unlike KLH for 4-CP Consequently, similar values are obtained for the Langmuir adsorption constant, K-ads, extracted from a pseudosteady-state analysis of the kinetics for oxygen on TiO2 dispersions and films in aqueous solution (i.e., ca. 0.0265 +/- 0.005 kPa(-1)), and for both films and dispersions, oxygen appears to be weakly adsorbed on TiO2 compared with 4-CP, at a rate that would take many minutes to reach equilibrium. The value of Kads for oxygen on titania particles dispersed in solution is ca. 4.7 times lower than that reported for the dark Langmuir adsorption isotherm; possible causes for this difference are discussed. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The spatial coherence of a nanosecond pulsed germanium collisionally excited x-ray laser is measured experimentally for three target configurations. The diagnostic is based on Young's slit interference fringes with a dispersing element to resolve the 23.2- and 23.6-nm spectral lines. Target configurations include a double-slab target, known as the injector, and geometries in which the injector image is image relayed to seed either an additional single-slab target or a second double-slab target. A special feature of this study is the observation of the change in the apparent source size with angle of refraction across the diverging laser beam. Source sizes derived with a Gaussian source model decrease from 44 mu m for the injector target by a variable factor of as much as 2, according to target configuration, for beams leaving the additional amplifiers after strong refraction in the plasma. (C) 1998 Optical Society of America [S0740-3224(98)00810-8].
Resumo:
The time dependence of the spatial coherence of the combined spectral lines at 23.2 and 23.6 nm from the Ge XXIII collisionally pumped soft-x-ray laser with a double-slab target is examined within a single nanosecond pulse by use of Young's interference fringes and a streak camera. High source intensity is linked with low spatial coherence and vice verse. Calculations of the source intensity, size, and position have also been made; these calculations refer to a single-slab source. Comparison between the observed and calculated intensities, and of the source sizes both calculated and derived from the Young's fringes by interpretation with a Gaussian model of source emission, show good agreement in general trends. (C) 1998 Optical Society of America [S0740-3224(98)01905-5].
Resumo:
We present a comprehensive study of the observational dependence of the mass-loss rate in stationary stellar winds of hot massive stars on the metal content of their atmospheres. The metal content of stars in the Magellanic Clouds is discussed, and a critical assessment is given of state-of-the-art mass-loss determinations of OB stars in these two satellite systems and the Milky-Way. Assuming a power-law dependence of mass loss on metal content,. M. Z(m), and adopting a theoretical relation between the terminal flow velocity and metal content, v(infinity). Z(0.13) (Leitherer et al. 1992, ApJ, 401, 596), we find m = 0.83 +/- 0.16 for non-clumped outflows from an analysis of the wind momentum luminosity relation (WLR) for stars more luminous than 105.2 L circle dot. Within the errors, this result is in agreement with the prediction m = 0.69 +/- 0.10 by Vink et al. (2001, A& A, 369, 574). Absolute empirical values for the mass loss, based on Ha and ultraviolet (UV) wind lines, are found to be a factor of two higher than predictions in this high luminosity regime. If this difference is attributed to inhomogeneities in the wind, and this clumping does not impact the predictions, this would imply that luminous O and early-B stars have clumping factors in their Ha and UV line forming regions of about a factor of four. For lower luminosity stars, the winds are so weak that their strengths can generally no longer be derived from optical spectral lines (essentially Ha) and one must currently rely on the analysis of UV lines. We confirm that in this low-luminosity domain the observed Galactic WLR is found to be much steeper than expected from theory (although the specific sample is rather small), leading to a discrepancy between UV mass-loss rates and the predictions by a factor 100 at luminosities of L similar to 10(4.75) L circle dot, the origin of which is unknown. We emphasize that even if the current mass-loss rates of hot luminous stars would turn out to be overestimated as a result of wind clumping, but the degree of clumping would be rather independent of metallicity, the scalings derived in this study are expected to remain correct.
Resumo:
Experiments have been carried out to investigate the polar distribution of atomic material ablated during the pulsed laser deposition of Cu in vacuum. Data were obtained as functions of focused laser spot size and power density. Thin films were deposited onto flat glass substrates and thickness profiles were transformed into polar atomic flux distributions of the form f(theta)=cos(n) theta. At constant focused laser power density on target, I=4.7+/-0.3X10(8) W/cm(2), polar distributions were found to broaden with a reduction in the focused laser spot size. The polar distribution exponent n varied from 15+/-2 to 7+/-1 for focused laser spot diameter variation from 2.5 to 1.4 mm, respectively, with the laser beam exhibiting a circular aspect on target. With the focused laser spot size held constant at phi=1.8 mm, polar distributions were observed to broaden with a reduction in the focused laser power density on target, with the associated polar distribution exponent n varying from 13+/-1.5 to 8+/-1 for focused laser power density variation from 8.3+/-0.3X10(8) to 2.2+/-0.1X10(8) W/cm(2) respectively. Data were compared with an analytical model available within the literature, which correctly predicts broadening of the polar distribution with a reduction in focused laser spot size and with a reduction in focused laser power density, although the experimentally observed magnitude was greater than that predicted in both cases. (C) 1996 American Institute of Physics.
Resumo:
The scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15-380 mJ at intensities of 10(16)-10(18) W/cm(2). The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.