37 resultados para CFU


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Ventilator-acquired pneumonia (VAP) is a common reason for antimicrobial therapy in the intensive care unit (ICU). Biomarker-based diagnostics could improve antimicrobial stewardship through rapid exclusion of VAP. Bronchoalveloar lavage (BAL) fluid biomarkers have previously been shown to allow the exclusion of VAP with high confidence. Methods/Design This is a prospective, multi-centre, randomised, controlled trial to determine whether a rapid biomarker-based exclusion of VAP results in fewer antibiotics and improved antimicrobial management. Patients with clinically suspected VAP undergo BAL, and VAP is confirmed by growth of a potential pathogen at > 104 colony-forming units per millilitre (CFU/ml). Patients are randomised 1:1, to either a ‘biomarker-guided recommendation on antibiotics’ in which BAL fluid is tested for IL-1β and IL-8 in addition to routine microbiology testing, or to ‘routine use of antibiotics’ in which BAL undergoes routine microbiology testing only. Clinical teams are blinded to intervention until 6 hours after randomisation, when biomarker results are reported to the clinician. The primary outcome is a change in the frequency distribution of antibiotic-free days (AFD) in the 7 days following BAL. Secondary outcome measures include antibiotic use at 14 and 28 days; ventilator-free days; 28-day mortality and ICU mortality; sequential organ failure assessment (SOFA) at days 3, 7 and 14; duration of stay in critical care and the hospital; antibiotic-associated infections; and antibiotic-resistant pathogen cultures up to hospital discharge, death or 56 days. A healthcare-resource-utilisation analysis will be calculated from the duration of critical care and hospital stay. In addition, safety data will be collected with respect to performing BAL. A sample size of 210 will be required to detect a clinically significant shift in the distribution of AFD towards more patients having fewer antibiotics and therefore more AFD. Discussion This trial will test whether a rapid biomarker-based exclusion of VAP results in rapid discontinuation of antibiotics and therefore improves antibiotic management in patients with suspected VAP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: A novel lateral flow, immunochromatographic assay (LFD) specific for Mycobacterium bovis, the cause of bovine tuberculosis and zoonotic TB, was recently developed at Queen’s University Belfast. The LFD detects whole M. bovis cells, in contrast to other commercially available LFD tests (BD MGITTM TBc ID, SD Bioline TB Ag MPT 64, Capilia TB-Neo kit) which detect MPT64 antigen secreted during growth. The new LFD test has been evaluated in the veterinary context, and its specificity for M. bovis in the broadest sense (i.e. subsp. bovis, subsp. caprae and BCG) and sensitivity to detect M. bovis in positive MGIT™ liquid cultures was demonstrated comprehensively.
Methods: Preliminary work was carried out by researchers at Queen’s University Belfast to optimise sputum sample preparation, estimate the limit of detection (LOD) of the LFD with M. bovis-spiked sputum samples, and check LFD specificity by testing a broad range of non-tuberculous Mycobacterium spp. (NTM) and other bacterial genera commonly encountered in sputum samples (Haemophilus, Klebsiella, Pseudomonas, Staphylococcus). In the Cameroon laboratory direct detection of M. bovis in human sputa was attempted, and 50 positive sputum MGIT™ cultures and 33 cultures of various Mycobacterium spp. originally isolated from human sputa were tested.
Results: Sputum sample preparation consisted of digestion with 1% NALC for 30 min, centrifugation at 3000g for 20 min, PBS wash, centrifugation again, and pellet resuspended in KPL blocking buffer before 100 µl was applied to the LFD. The LOD of the LFD applied to M. bovis-spiked sputum was estimated to be 104 CFU/ml. A small number of confirmed Ziehl-Neelsen ‘3+’ M. bovis positive sputum samples were tested directly but no positive LFD results were obtained. All of the sputum MGIT™ cultures and mycobacterial cultures (including M. tuberculosis, M. africanum, M. bovis, M. intracellulare, M. scrofulaceum, M. fortuitum, M. peregrinum, M. interjectum) tested LFD negative when read after 15 min except for the M. bovis cultures, thereby confirming specificity of LFD for M. bovis in the clinical microbiology context.
Conclusions: Results indicate that the ‘Rapid-bTB’ LFD is a very specific test, able to differentiate M. bovis from M. tuberculosis, M. africanum, and a range of NTM isolated from human sputa in MGITTM liquid cultures. However, the LFD lacks sufficient sensitivity to be applied earlier in the diagnostic process to directly test human sputa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold plasma is an emerging non-thermal processing technology that could be used for large scale leaf decontamination as an alternative to chlorine washing. In this study the effect of an atmospheric cold plasma apparatus (air DBD, 15 kV) on the safety, antioxidant activity and quality of radicchio (red chicory, Cichorium intybus L.) was investigated after 15 and 30 min of treatment (in afterglow at 70 mm from the discharge, at 22 °C and 60% of RH) and during storage. Escherichia coli O157:H7 inoculated on radicchio leaves was significantly reduced after 15 min cold plasma treatment (-1.35 log MPN/cm<sup>2</sup>). However, a 30 min plasma treatment was necessary to achieve a significant reduction of Listeria monocytogenes counts (-2.2 log CFU/cm<sup>2</sup>). Immediately after cold plasma treatment, no significant effects emerged in terms of antioxidant activity assessed by the ABTS and ORAC assay and external appearance of the radicchio leaves. Significant changes between treated and untreated radicchio leaves are quality defects based on the cold plasma treatment. Atmospheric cold plasma appears to be a promising processing technology for the decontamination of leafy vegetables although some criticalities, that emerged during storage, need to be considered in future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explored the effect of HPP (400 MPa/1 min) and a Weissella viridescens protective culture, alone or in conjunction, against Listeria monocytogenes in ready-to-eat (RTE) salads with different pH values (4.32 and 5.59) during storage at 4 and 12 °C. HPP was able to reduce the counts of the pathogen after treatment achieving approximately a 4.0 and 1.5 log CFU/g reduction in the low and higher pH RTE salad, respectively. However, L. monocytogenes was able to recover and grow during subsequent storage. W. viridescens grew in both RTE salads at both storage temperatures, with HPP resulting in only a small immediate reduction of W. viridescens ranging from 0.50 to 1.2 log CFU/g depending on the pH of the RTE salad. For the lower pH RTE salad, the protective culture was able to gradually reduce the L. monocytogenes counts during storage whereas for the higher pH RTE salad in some cases it delayed growth significantly or exerted a bacteriostatic effect. exerted a bacteriostatic effect. The results revealed that the increased storage temperature led to an increase in the inactivation/inhibition of L. monocytogenes in the presence of W. viridescens. The combination of HPP and W. viridescens is a promising strategy to control L. monocytogenes and can increase safety even when a break in the chill chain occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study rigorously evaluated a previously developed immunobead array method to simultaneously detect three important foodborne pathogens, Campylobacter jejuni, Listeria monocytogenes, and Salmonella spp., for its actual application in routine food testing. Due to the limitation of the detection limit of the developed method, an enrichment step was included in this study by using Campylobacter Enrichment Broth for C. jejuni and Universal Pre-enrichment Broth for L. monocytogenes and Salmonella spp.. The findings show that the immunobead array method was capable of detecting as low as 1 CFU of the pathogens spiked in the culture media after being cultured for 24 hours for all three pathogens. The immunobead array method was further evaluated for its pathogen detection capabilities in ready-to-eat (RTE) and ready-to-cook (RTC) chicken samples and proven to be able to detect as low as 1 CFU of the pathogens spiked in the food samples after being cultured for 24 hours in the case of Salmonella spp., and L. monocytogenes and 48 hours in the case of C. jejuni. The method was subsequently validated with three types of chicken products (RTE, n=30; RTC, n=20; raw chicken, n=20) and was found to give the same results as the conventional plating method. Our findings demonstrated that the previously developed immunobead array method could be used for actual food testing with minimal enrichment period of only 52 hours, whereas the conventional ISO protocols for the same pathogens take 90-144 hours. The immunobead array was therefore an inexpensive, rapid and simple method for the food testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop a multiplex loop-mediated isothermal amplification (LAMP) method capable of detecting Escherichia coli generally and verocytotoxigenic E. coli (VTEC) specifically in beef and bovine faeces. The LAMP assay developed was highly specific (100%) and able to distinguish between E. coli and VTEC based on the amplification of the phoA, and stx1 and/or stx2 genes, respectively. In the absence of an enrichment step, the limit of detection 50% (LOD50) of the LAMP assay was determined to be 2.83, 3.17 and 2.83-3.17 log CFU/g for E. coli with phoA, stx1 and stx2 genes, respectively, when artificially inoculated minced beef and bovine faeces were tested. The LAMP calibration curves generated with pure cultures, and spiked beef and faeces, suggested that the assay had good quantification capability. Validation of the assay, performed using retail beef and bovine faeces samples, demonstrated good correlation between counts obtained by the LAMP assay and by a conventional culture method, but suggested the possibility of false negative LAMP results for 12.5-14.7% of samples tested. The multiplex LAMP assay developed potentially represents a rapid alternative to culture for monitoring E.coli levels in beef or faeces and it would provide additional information on the presence of VTEC. However, some further optimisation is needed to improve detection sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes further validation of a previously described Peptide-mediated magnetic separation (PMS)-Phage assay, and its application to test raw cows’ milk for presence of viable Mycobacterium avium subsp. paratuberculosis (MAP). The inclusivity and exclusivity of the PMS-phage assay were initially assessed, before the 50% limit of detection (LOD50) was determined and compared with those of PMS-qPCR (targeting both IS900 and f57) and PMS-culture. These methods were then applied in parallel to test 146 individual milk samples and 22 bulk tank milk samples from Johne’s affected herds. Viable MAP were detected by the PMS-phage assay in 31 (21.2%) of 146 individual milk samples (mean plaque count of 228.1 PFU/50 ml, range 6-948 PFU/50 ml), and 13 (59.1%) of 22 bulk tank milks (mean plaque count of 136.83 PFU/50 ml, range 18-695 PFU/50 ml). In contrast, only 7 (9.1%) of 77 individual milks and 10 (45.4%) of 22 bulk tank milks tested PMS-qPCR positive, and 17 (11.6%) of 146 individual milks and 11 (50%) of 22 bulk tank milks tested PMS-culture positive. The mean 50% limits of detection (LOD50) of the PMS-phage, PMS-IS900 qPCR and PMS-f57 qPCR assays, determined by testing MAP-spiked milk, were 0.93, 135.63 and 297.35 MAP CFU/50 ml milk, respectively. Collectively, these results demonstrate that, in our laboratory, the PMS-phage assay is a sensitive and specific method to quickly detect the presence of viable MAP cells in milk. However, due to its complicated, multi-step nature, the method would not be a suitable MAP screening method for the dairy industry.