61 resultados para CARCINOGENESIS
Resumo:
The recent identification of somatic mutations in the catalytic region of PIK3 (PIK3CA) in breast cancer and demonstration of their oncogenic function has implicated PIK3CA in mammary carcinogenesis. To investigate possible ethnic differences in patterns of PIK3CA mutations in Singaporean Chinese breast cancer and to characterize these in a panel of cell lines, we sequenced exons 9 and 20 in 80 primary tumors, 19 breast cancer cell lines and 7 normal human mammary epithelial cells (HMECs). Searching for novel hotspots of mutation, we sequenced additional exons ( 1, 2, 6, 7, 14 and 18) in 20 primary tumors and 6 breast cancer cell lines. We detected 33 point mutations in 31 of 80 (39%) breast cancers, and 11 mutations in 10 of 19 (53%) breast cancer cell lines. No mutations were detected in normal breast tissue adjacent to the tumor, or in the 6 normal HMECs. The exon 20 A3140G (H1047R) substitution was identified most frequently (22/31, 71%) and showed a significant association with patient age ( p = 0.043) and stage of the disease ( p = 0.025), but not with ER/PR status or histological grade of the tumor. The incidence of point mutations in PIK3CA, the A3140G substitution in particular, in Singapore breast cancers are among the most frequent reported to date for any gene in breast cancer. The results suggest that mutation of PIK3CA might contribute to development of early stage breast cancer and could provide a potent target for early diagnosis and therapy.
Resumo:
Histone deacetylases ( HDACs) 1 and 2 share a high degree of homology and coexist within the same protein complexes. Despite their close association, each possesses unique functions. We show that the upregulation of HDAC2 in colorectal cancer occurred early at the polyp stage, was more robust and occurred more frequently than HDAC1. Similarly, while the expression of HDACs1 and 2 were increased in cervical dysplasia and invasive carcinoma, HDAC2 expression showed a clear demarcation of high-intensity staining at the transition region of dysplasia compared to HDAC1. Upon HDAC2 knockdown, cells displayed an increased number of cellular extensions reminiscent of cell differentiation. There was also an increase in apoptosis, associated with increased p21(Cip1/WAF1) expression that was independent of p53. These results suggest that HDACs, especially HDAC2, are important enzymes involved in the early events of carcinogenesis, making them candidate markers for tumor progression and targets for cancer therapy.
Resumo:
p63 is a master regulator of proliferation and differentiation in stratifying epithelia, and its expression is frequently altered in carcinogenesis. However, its role in maintaining proliferative capacity remains unclear. Here, we demonstrate that hypoproliferation and loss of differentiation in organotypic raft cultures of primary neonatal human foreskin keratinocytes (HFKs) depleted of the a and ß isoforms of p63 result from p53-p21-mediated accumulation of retinoblastoma (Rb) family member p130. Hypoproliferation in p63-depleted HFKs can be rescued by depletion of p53, p21(CIP1) or p130. Furthermore, we identified the gene encoding S-phase kinase-associated protein 2 (Skp2), the recognition component of the SCF(Skp2) E3 ubiquitin ligase, as a novel target of p63, potentially influencing p130 levels. Expression of Skp2 is maintained by p63 binding to a site in intron 2 and mRNA levels are downregulated in p63-depleted cells. Hypoproliferation in p63-depleted cells can be restored by re-expression of Skp2. Taken together, these results indicate that p63 plays a multifaceted role in maintaining proliferation in the mature regenerating epidermis, in addition to being required for differentiation.
Resumo:
A central paradox of vitamin D biology is that 1alpha,25-(OH)(2) D(3) exposure inversely relates to colorectal cancer (CRC) risk despite a capacity for activation of both pro- and anti-oncogenic mediators including osteopontin (OPN)/CD44 and E-cadherin, respectively. Most sporadic CRCs arise from adenomatous polyposis coli (APC) gene mutation but understanding of its effects on vitamin D growth control is limited. Here we investigate effects of the Apc(Min/+) genotype on 1alpha,25-(OH)(2) D(3) regulation of OPN/CD44/E-cadherin signalling and intestinal tumourigenesis, in vivo. In untreated Apc(Min/+) versus Apc(+/+) intestines, expression levels of OPN and its CD44 receptor were increased, whereas E-cadherin tumour suppressor signalling was attenuated. Treatment by 1alpha,25-(OH)(2) D(3) or rationally designed analogues (QW or BTW) enhanced OPN but inhibited expression of CD44, the OPN receptor implicated in cell growth. These treatments also enhanced E-cadherin tumour suppressor activity, characterized by inhibition of beta-catenin nuclear localization, T-cell factor 1 and c-myelocytomatosis protein expression in Apc(Min/+) intestine. All secosteroids suppressed Apc(Min/+)-driven tumourigenesis although QW and BTW had lower calcium-related toxicity. Taken together, these data indicate that the Apc(Min/+) genotype modulates vitamin D secosteroid actions to promote functional predominance of E-cadherin tumour suppressor activity within antagonistic molecular networks. APC heterozygosity may promote favourable tissue- or tumour-specific conditions for growth control by vitamin D secosteroid treatment.
Resumo:
Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis.
Resumo:
A number of epigenetic alterations occur in both the virus and host cellular genomes during human papillomavirus (HPV)-associated carcinogenesis, and investigations of such alterations, including changes in chromatin proteins and histone modifications, have the potential to lead to therapeutic epigenetic reversion. We report here that transformed HPV16 E6/E7-expressing primary human foreskin keratinocytes (HFKs) (E6/E7 cells) demonstrate increased expression of the PRC2 methyltransferase EZH2 at both the mRNA and protein levels but do not exhibit the expected increase in trimethylated H3K27 (H3K27me3) compared to normal keratinocytes. In contrast, these cells show a reduction in global H3K27me3 levels in vitro, as well as upregulation of the KDM6A demethylase. We further show for the first time that transformation with the HPV16 E6 and E7 oncogenes also results in an increase in phosphorylated EZH2 serine 21 (P-EZH2-Ser21), mediated by active Akt, and in a downregulation of the PRC1 protein BMI1 in these cells. High-grade squamous cervical intraepithelial lesions also showed a loss of H3K27me3 in the presence of increased expression of EZH2. Correlating with the loss of H3K27me3, E6/E7 cells exhibited derepression of specific EZH2-, KMD6A-, and BMI1-targeted HOX genes. These results suggest that the observed reduction in H3K27me3 may be due to a combination of reduced activities/levels of specific polycomb proteins and increases in demethylases. The dysregulation of multiple chromatin proteins resulting in the loss of global H3K27me3 and the transcriptional reprogramming in HPV16 E6/E7-infected cells could provide an epigenetic signature associated with risk and/or progression of HPV16-associated cancers, as well as the potential for epigenetic reversion in the future.
Resumo:
An important difference between chemical agents that induce oxidative damage in DNA and ionizing radiation is that radiation-induced damage is clustered locally on the DNA, Both modelling and experimental studies have predicted the importance of clustering of lesions induced by ionizing radiation and its dependence on radiation quality. With increasing linear energy transfer, it is predicted that complex lesions will be formed within 1-20 bp regions of the DNA, As well as strand breaks, these sites may contain multiple damaged bases, We have compared the yields of single strand breaks (ssb) and double strand breaks (dsb) along with those produced by treatment of irradiated DNA with the enzyme endonuclease III, which recognizes a number of oxidized pyrimidines in DNA and converts them to strand breaks. Plasmid DNA was irradiated under two different scavenging conditions to test the involvement of OH radicals with either Co-60 gamma-rays or alpha-particles from a Pu-238 source. Under low scavenging conditions (10 mM Tris) gamma-irradiation induced 7.1x10(-7) ssb Gy/bp, which increased 3.7-fold to 2.6 x 10(-6) ssb Gy/bp with endo III treatment. In contrast the yields of dsb increased by 4.2-fold from 1.5 x 10(-8) to 6.3 x 10(-8) dsb Gy/bp, This equates to an additional 2.5% of the endo III-sensitive sites being converted to dsb on enzyme treatment. For alpha-particles this increased to 9%. Given that endo III sensitive sites may only constitute similar to 40% of the base lesions induced in DNA, this suggests that up to 6% of the ssb measured in X- and 22% in alpha-particle-irradiated DNA could have damaged bases associated with them contributing to lesion complexity.
Resumo:
Recent evidence suggests that genomic instability, which is an important step in carcinogenesis, may be important in the effectiveness of radiation as a carcinogen, particularly for high-LET radiations. Understanding the biological effects underpinning the risks associated with low doses of densely ionizing radiations is complicated in experimental systems by the Poisson distribution of particles that ran be delivered, In this study, we report an approach to determine the effect of the lowest possible cellular radiation dose of densely ionizing at particles, that of a single particle traversal. Using microbeam technology and an approach for immobilizing human T-lymphocytes, we have measured the effects of single alpha -particle traversals on the surviving progeny of cells. A significant increase in the proportion of aberrant cells is observed 12-13 population doublings after exposure, with a high level of chromatid-type aberrations, indicative of an instability phenotype, These data suggest that instability may be important in situations where even a single particle traverses human cells. (C) 2001 by Radiation Research Society.
Resumo:
Despite a clear link between ataxia-telangiectasia mutated (ATM)-dependent phosphorylation of p53 and cell cycle checkpoint control, the intracellular biology and subcellular localization of p53 phosphoforms during the initial sensing of DNA damage is poorly understood. Using GO-G, confluent primary human diploid fibroblast cultures, we show that endogenous p53, phosphorylated at Ser(15) (p53(Ser15)), accumulates as discrete, dose-dependent and chromatin-bound foci within 30 minutes following induction of DNA breaks or DNA base damage. This biologicafly distinct subpool of p53(Ser15) is ATM dependent and resistant to 26S-proteasomal degradation. p53(Ser15) colocalizes and coimmunoprecipitates with gamma-H2AX with kinetics similar to that of biochemical DNA double-strand break (DNA-dsb) rejoining. Subnuclear micro-beam irradiation studies confirm p53 S,,15 is recruited to sites of DNA damage containing gamma-H2AX, ATM(Ser1981), and DNA-PKcs(Thr2609) in vivo. Furthermore, studies using isogenic human and murine cells, which express Ser(15) or Ser(18) phosphomutant proteins, respectively, show defective nuclear foci formation, decreased induction of p21(WAF) decreased gamma-H2AX association, and altered DNA-dsb kinetics following DNA damage. Our results suggest a unique biology for this p53 phosphoform in the initial steps of DNA damage signaling and implicates ATM-p53 chromatin-based interactions as mediators of cell cycle checkpoint control and DNA repair to prevent carcinogenesis. (Cancer Res 2005; 65(23): 10810-21).
Resumo:
Evidence is accumulating that vitamin D may be protective against carcinogenesis, although exceptions have been observed for some digestive tract neoplasms. The aim of the present study was to explore the association between dietary vitamin D and related nutrients and the risk of oesophageal adenocarcinoma and its precursor conditions, Barrett's oesophagus and reflux oesophagitis. In an all-Ireland case-control study conducted between March 2002 and July 2005, 218 oesophageal adenocarcinoma patients, 212 Barrett's oesophagus patients, 208 reflux oesophagitis patients and 252 population-based controls completed a 101-item FFQ, and provided lifestyle and demographic information. Multiple logistic regression analysis was applied to examine the association between dietary intake and disease risk. Oesophageal adenocarcinoma risk was significantly greater for individuals with the highest compared with the lowest tertile of vitamin D intake (OR 1·99, 95 % CI 1·03, 3·86; P for trend = 0·02). The direct association could not be attributed to a particular vitamin D food source. Vitamin D intake was unrelated to Barrett's oesophagus and reflux oesophagitis risk. No significant associations were observed for Ca or dairy intake and oesophageal adenocarcinoma, Barrett's oesophagus or reflux oesophagitis development. High vitamin D intake may increase oesophageal adenocarcinoma risk but is not related to reflux oesophagitis and Barrett's oesophagus. Ca and dairy product intake did not influence the development of these oesophageal lesions. These findings suggest that there may be population subgroups at an increased risk of oesophageal adenocarcinoma if advice to improve vitamin D intake from foods is implemented. Limited work has been conducted in this area, and further research is required.
Resumo:
Oxidative stress appears to be important in the pathogenesis of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Single-nucleotide polymorphisms (SNPs) of antioxidant enzyme genes may play a part in determining individual susceptibility to these diseases. The Factors Influencing the Barrett's Adenocarcinoma Relationship (FINBAR) study is a population-based, case-control study of BE and EAC in Ireland. DNA from EAC (n = 207), BE (> or =3 cm BE at endoscopy with specialized intestinal metaplasia on biopsy, n = 189) and normal population controls (n = 223) were analyzed. Several SNPs spanning the genes for glutathione S-transferase P1 (GSTP1), manganese superoxide dismutase (MnSOD) and glutathione peroxidase 2 (GPX2) were genotyped using multiplex polymerase chain reaction and SNaPshottrade mark. The chi(2) test was used to compare genotype and allele frequencies between case and control subjects. Linkage disequilibrium between SNPs was quantified using Lewontin's D' value and haplotype frequency estimates obtained using Haploview. Eleven SNPs were genotyped (six for GSTP1, three for MnSOD and two for GPX2); all were in Hardy-Weinberg equilibrium. None was significantly associated with EAC or BE even before Bonferroni correction. Odds ratios for EAC for individual SNPs ranged from 0.68 [95% confidence interval (CI) 0.43-1.08] to 1.25 (95% CI 0.73-2.16), and for BE from 0.84 (95% CI 0.52-1.30) to 1.30 (95% CI 0.85-1.97). SNPs in all three genes were in strong linkage disequilibrium (D' > 0.887) but haplotype analysis did not show any significant association with EAC or BE. SNPs involving the GSTP1, MnSOD and GPX2 genes were not associated with BE or EAC. Further studies aimed at identifying susceptibility genes should focus on different antioxidant genes or different pathways.
Resumo:
Aflatoxins and fumonisins (FB) are mycotoxins contaminating a large fraction of the world's food, including maize, cereals, groundnuts and tree nuts. The toxins frequently co-occur in maize. Where these commodities are dietary staples, for example, in parts of Africa, Asia and Latin America, the contamination translates to high-level chronic exposure. This is particularly true in subsistence farming communities where regulations to control exposure are either non-existent or practically unenforceable. Aflatoxins are hepatocarcinogenic in humans, particularly in conjunction with chronic hepatitis B virus infection, and cause aflatoxicosis in episodic poisoning outbreaks. In animals, these toxins also impair growth and are immunosuppressive; the latter effects are of increasing interest in human populations. FB have been reported to induce liver and kidney tumours in rodents and are classified as Group 2B 'possibly carcinogenic to humans', with ecological studies implying a possible link to increased oesophageal cancer. Recent studies also suggest that the FB may cause neural tube defects in some maize-consuming populations. There is a plausible mechanism for this effect via a disruption of ceramide synthase and sphingolipid biosynthesis. Notwithstanding the need for a better evidence-base on mycotoxins and human health, supported by better biomarkers of exposure and effect in epidemiological studies, the existing data are sufficient to prioritize exposure reduction in vulnerable populations. For both toxins, there are a number of practical primary and secondary prevention strategies which could be beneficial if the political will and financial investment can be applied to what remains a largely and rather shamefully ignored global health issue.
Resumo:
The degree of gene hypermethylation in non-neoplastic colonic mucosa (NNCM) is a potentially important event in the development of colorectal cancer (CRC), particularly for the subgroup with a CpG island methylator phenotype (CIMP). In this study, we aimed to use an unbiased and high-throughput approach to evaluate the topography of DNA methylation in the non-neoplastic colonic mucosa (NNCM) surrounding colorectal cancer (CRC). A total of 61 tissue samples comprising 53 NNCM and 8 tumor samples were obtained from hemicolectomy specimens of two CRC patients (Cases 1 and 2). NNCM was stripped from the underlying colonic wall and samples taken at varying distances from the tumor. The level of DNA methylation in NNCM and tumor tissues was assessed at 1,505 CpG sites in 807 cancer-related genes using Illumina GoldenGate® methylation arrays. Case 1 tumor showed significantly higher levels of methylation compared to surrounding NNCM samples (P?
Resumo:
Squamous cell carcinoma accounts for 20% of all human lung cancers and is strongly linked to cigarette smoking. It develops through premalignant changes that are characterized by high levels of keratin 14 (K14) expression in the airway epithelium and evolve through basal cell hyperplasia, squamous metaplasia and dysplasia to carcinoma in situ and invasive carcinoma. In order to explore the impact of K14 in the pulmonary epithelium that normally lacks both squamous differentiation and K14 expression, human keratin 14 gene hK14 was constitutively expressed in mouse airway progenitor cells using a mouse Clara cell specific 10 kDa protein (CC10) promoter. While the lungs of CC10-hK14 transgenic mice developed normally, we detected increased expression of K14 and the molecular markers of squamous differentiation program such as involucrin, loricrin, small proline-rich protein 1A, transglutaminase 1 and cholesterol sulfotransferase 2B1. In contrast, wild-type lungs were negative. Aging CC10-hK14 mice revealed multifocal airway cell hyperplasia, occasional squamous metaplasia and their lung tumors displayed evidence for multidirectional differentiation. We conclude that constitutive expression of hK14 initiates squamous differentiation program in the mouse lung, but fails to promote squamous maturation. Our study provides a novel model for assessing the mechanisms of premalignant lesions in vivo by modifying differentiation and proliferation of airway progenitor cells. © The Author 2008. Published by Oxford University Press. All rights reserved.
Resumo:
The basic helix-loop-helix protein achaete-scute homolog-1 (ASH1) is involved in lung neuroendocrine (NE) differentiation and tumor promotion in SV40 transgenic mice. Constitutive expression of human ASH-1 (hASH1) in mouse lung results in hyperplasia and remodeling that mimics bronchiolization of alveoli (BOA), a potentially premalignant lesion of human lung carcinomas. We now show that this is due to sustained cellular proliferation in terminal bronchioles and resistance to apoptosis. Throughout the airway epithelium the expression of anti-apoptotic Bcl-2 and c-Myb was increased and Akt/mTOR pathway activated. Moreover, the expression of matrix metalloproteases (MMPs) including MMP7 was specifically enhanced at the bronchiolo-alveolar duct junction and BOA suggesting that MMPs play a key role in this microenvironment during remodeling. We also detected MMP7 in 70% of human BOA lesions. Knockdown of hASH1 gene in human lung cancer cells in vitro suppressed growth by increasing apoptosis. We also show that forced expression of hASH1 in immortalized human bronchial epithelial cells decreases apoptosis. We conclude that the impact of hASH1 is not limited to cells with NE phenotype. Rather, constitutive expression of hASH1 in lung epithelium promotes remodeling through multiple pathways that are commonly activated during lung carcinogenesis. The collective results suggest a novel model of BOA formation via hASH1-induced suppression of the apoptotic pathway. Our study yields a promising new preclinical tool for chemoprevention of peripheral lung carcinomas. © 2007 USCAP, Inc All rights reserved.