104 resultados para Bridge whist.
Resumo:
This paper details the monitoring and repair of an impact damaged prestressed concrete bridge. The repair was required following an impact from a low-loader carrying an excavator while passing underneath the bridge. The repair was carried out by preloading the bridge in the vicinity of the damage to relieve some prestressing. This preload was removed following the hardening and considerable strength gain of the repair material. The true behaviour of damaged prestressed concrete bridges during repair is difficult to estimate theoretically due to lack of benchmarking and inadequacy of assumed damage models. A network of strain gauges at locations of interest was thus installed during the entire period of repair. Effects of various activities were qualitatively and quantitatively observed. The interaction and rapid, model-free calibration of damaged and undamaged beams, including identification of damaged gauges were also probed. This full scale experiment is expected to be of interest and benefit to the practising engineer and the researcher alike.
Resumo:
Punching failure is the common failure mode in concrete bridge deck slabs when these structural components are subjected to local patch loads, such as tyre loads. Past research has shown that reinforced concrete slabs in girder–slab type bridges have a load-carrying capacity far greater than the ultimate static loads predicted by traditional design methods, because of the presence of compressive membrane action. However, due to the instability problems from punching failure, it is difficult to predict ultimate capacities accurately in numerical analyses. In order to overcome the instability problems, this paper establishes an efficient non-linear finite-element analysis using the commercial finite-element package Abaqus. In the non-linear finite-element analysis, stabilisation methods were adopted and failure criteria were established to predict the ultimate punching behaviour of deck slabs in composite steel–concrete bridges. The proposed non-linear finite-element analysis predictions showed a good correlation on punching capacities with experimental tests.
Resumo:
This paper presents an innovative sensor system, created specifically for new civil engineering structural monitoring applications, allowing specially packaged fiber grating-based sensors to be used in harsh, in-the-field measurement conditions for accurate strain measurement with full temperature compensation. The sensor consists of two fiber Bragg gratings that are protected within a polypropylene package, with one of the fiber gratings isolated from the influence of strain and thus responding only to temperature variations, while the other is sensitive to both strain and temperature. To achieve this, the temperature-monitoring fiber grating is slightly bent and enclosed in a metal envelope to isolate it effectively from the strain. Through an appropriate calibration process, both the strain and temperature coefficients of each individual grating component when incorporated in the sensor system can be thus obtained. By using these calibrated coefficients in the operation of the sensor, both strain and temperature can be accurately determined. The specific application for which these sensors have been designed is seen when installed on an innovative small-scale flexi-arch bridge where they are used for real-time strain measurements during the critical installation stage (lifting) and loading. These sensors have demonstrated enhanced resilience when embedded in or surface-mounted on such concrete structures, providing accurate and consistent strain measurements not only during installation but subsequently during use. This offers an inexpensive and highly effective monitoring system tailored for the new, rapid method of the installation of small-scale bridges for a variety of civil engineering applications.
Resumo:
alpha(1)-adrenergic receptor (AR) activation is thought to be initiated by disruption of a constraining interhelical salt bridge (Porter et al., 1996). Disruption of this salt bridge is achieved through a competition for the aspartic acid residue in transmembrane domain three by the protonated amine of the endogenous ligand norepinephrine and a lysine residue in transmembrane domain seven. To further test this hypothesis, we investigated the possibility that a simple amine could mimic an important functional group of the endogenous ligand and break this alpha(1)-AR ionic constraint leading to agonism. Triethylamine (TEA) was able to generate concentration-dependent increases of soluble inositol phosphates in COS-1 cells transiently transfected with the hamster alpha(1b)-AR and in Rat-1 fibroblasts stably transfected with the human alpha(1a)-AR subtype. TEA was also able to synergistically potentiate the second messenger production by weak partial alpha(1)-AR agonists and this effect was fully inhibited by the alpha(1)-AR antagonist prazosin. However, this synergistic potentiation was not observed for full alpha(1)-AR agonists. Instead, TEA caused a parallel rightward shift of the dose-response curve, consistent with the properties of competitive antagonism. TEA specifically bound to a single population of alpha(1)-ARs with a K-i of 28.7 +/- 4.7 mM. In addition, the site of binding by TEA to the alpha(1)-AR is at the conserved aspartic acid residue in transmembrane domain three, which is part of the constraining salt bridge. These results indicate a direct interaction of TEA in the receptor agonist binding pocket that leads to a disruption of the constraining salt bridge, thereby initiating alpha(1)-AR activation.