60 resultados para Branched glycerol dialkyl glycerol tetraether


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of dye reduction, in photocatalyst indicator ink films on self cleaning glass, is studied with respect to dye concentration. The water-based, photocatalyst indicator inks comprised a redox dye, D-ox, a sacrificial electron donor (glycerol) and a polymer, hydroxyethyl cellulose. The dyes used were: Resazurin (Rz), dichloroindo-phenol (DCIP) and methylene blue (MB), although the latter required acidification of the ink (0.01M HCl) to make it work effectively under ambient conditions. Under anaerobic conditions, the photoreduction of each of the dyes, in an otherwise identical ink formulation, on Activ (TM) self-cleaning glass is zero-order with respect to [D-ox]. Seven commercial samples of Rz, each in a typical ink formulation, were tested on the same piece of self-cleaning glass under aerobic conditions and produced a striking range (over 280%) of different apparent activities for the glass, when there should have been none. The underlying cause of this variation in assessed activity is shown to be due to the combination of a variation in the purity of the commercial samples and the zero-order nature of the kinetics of indicator dye reduction. The relevance of this work and the latter observation, in particular to future use of these films for the rapid assessment of the activities of new and established photocatalytic films, is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new photocatalyst indicator ink based on methylene blue (MB) is described that allows the presence and activity of a thin (15 nm) photocatalytic film to be assessed in seconds. The ink is very stable (shelf life > 6 months) and the color change (blue to colorless) striking. The ink utilizes a sacrificial electron donor, glycerol, to trap the photogenerated holes, leaving the photogenerated electrons to react with MB to produce its. reduced, leuco, form (LMB). The efficacy of the MB ink is due to the presence of acid in its formulation, which curtails significantly. the otherwise usual, rapid reoxidation of LMB by ambient O-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A UVB specific dosimeter is described comprising: a redox dye (2,6-dichloroindophenol, DCIP), a semiconductor ( tin(IV) oxide, SnO2) and a sacrificial electron donor ( glycerol) dispersed in a polymer ( hydroxy ethyl cellulose, HEC) film. The dosimeter is blue in the absence of UVB light but rapidly loses colour on exposure to UVB light. The spectral characteristics of a typical UVB dosimeter film and the mechanism by which the colour change occurs are detailed. DCIP UVB dosimeter films exhibit a response that is related to the irradiance level and duration of UVB exposure, the level of SnO2 present and to a lesser extent the level of glycerol present. The response of the dosimeter appears to be independent of dye concentration and film thickness. Furthermore, DCIP UVB dosimeter films respond to solar simulated light, exhibiting a colour loss that can be simply related to the Minimal Erythemal Dose (MED) exposure for skin type II. As a consequence, such indicators have potential for measuring solar radiation exposure and providing an early warning of erythema for most Caucasian skin (i.e. skin type II).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline SnO2, ncSnO(2), is used as a photosensitiser in a colourimetric O-2 indicator that comprises a sacrificial electron donor, glycerol, a redox dye, methylene blue (MB), and an encapsulating polymer, hydroxyethyl cellulose (HEC). Upon exposure to a burst of UVB light the indicator is activated (photo-bleached) as the MB is photoreduced by the ncSnO(2) particles. In the absence of oxygen, the film stays bleached, but recovers its original colour upon exposure to oxygen. Unlike its TiO2-based predecessor, the HEC/glycerol/MB/ncSnO(2) O-2 indicator is not activated by UVA light from white fluorescent lamps, but is by UVB light. This feature provides much greater control in the activation of the indicator. Other work shows the rate of activation depends upon I-0.75, where I is the UVB irradiance, indicating a partial dependence upon the electron-hole recombination process. The half-life of the recovery of the original colour of a UV-activated film, t(50), is directly proportional to the ambient level of oxygen. The advantages of using this indicator in modified atmosphere packaging as a possible quality assurance indicator are discussed briefly. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oxygen indicator is described, comprising nanoparticles of titania dispersed in hydroxyethyl cellulose (HEC) polymer film containing a sacrificial electron donor, glycerol, and the redox indicator, indigo-tetrasulfonate (ITS). The indicator is blue-coloured in the absence of UV light, however upon exposure to UV light it not only loses its colour but also luminesces, unless and until it is exposed to oxygen, whereupon its original colour is restored. The initial photobleaching spectral ( absorbance and luminescence) response characteristics in air and in vacuum are described and discussed in terms of a simple reaction scheme involving UV activation of the titania photocatalyst particles, which are used to reduce the redox dye, ITS, to its leuco form, whilst simultaneously oxidising the glycerol to glyceraldehye. The response characteristics of the activated, that is, UV photobleached, form of the indicator to oxygen are also reported and the possible uses of such an indicator to measure ambient O-2 levels are discussed. Copyright (C) 2008 Andrew Mills et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An indicator ink based on the redox dye 2,6-dichloroindophenol ( DCIP) is described, which allows the rapid assessment of the activity of thin, commercial photocatalytic films, such as Activ. The ink works via a photoreductive mechanism, DCIP being reduced to dihydro-DCIP within ca. 7.5 minutes exposure to UVA irradiation of moderate intensity ( ca. 4.8mW cm(-2)). The kinetics of photoreduction are found to be independent of the level of dye present in the ink formulation, but are highly sensitive to the level of glycerol. This latter observation may be associated with a solvatochromic effect, whereby the microenvironment in which the dye finds itself and, as a consequence, its reactivity is altered significantly by small changes in the glycerol content. The kinetics of photoreduction also appear linearly dependent on the UVA light intensity with an observed quantum efficiency of ca. 1.8 x 10(-3). Copyright (C) 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solvent-based, irreversible oxygen indicator ink is described, comprising semiconductor photocatalyst nanoparticles, a solvent-soluble redox dye, mild reducing agent and polymer. Based on such an ink, a film - made of titanium dioxide, a blue, solvent-soluble, coloured ion-paired methylene blue dye, glycerol and the polymer zein - loses its colour rapidly (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ink, comprising the redox dye resazurin (Rz) and the sacrificial electron donor glycerol, is shown to be capable of the rapid assessment of the photocatalytic activities of self-cleaning films. In the key initial stage of photocatalysis the ink changes from blue to pink. Prolonged irradiation bleaches the ink and eventually mineralizes it. The kinetics of the initial photoinduced color change is studied as a function of UV irradiance, [glycerol], [Rz], and temperature. The results reveal an apparent approximate quantum yield of 3.5 x 10(-3) and an initial rate, r(i), which increases with [glycerol] and decreases with [Rz]. It is proposed that the reduction of Rz, dispersed throughout the thick (ca. 590 nm) indicator film, may take place either via the diffusion of the dye molecules in the ink film to the surface of the underlying semiconductor layer and their subsequent reaction with photogenerated electrons and/or via the diffusion of alpha-hydroxyalkyl radicals, produced by the oxidation of the glycerol by photogenerated holes, or hydroxy radicals, away from the surface of the semiconductor into the ink film and their subsequent reaction with the dye molecules therein. The decrease in r(i) with [Rz] appears to be due to dimer formation, with the latter impeding the reduction process. The activation energy for the initial color-change process is low, ca. 9.1 +/- 0.1 kJ mol(-1) and not unlike many other photocatalytic processes. The initial rate of dye reduction appears to be directly related to the rate of destruction of stearic acid. The ink can be applied by spin-coating, stamping, or writing, using a felt-tip pen. The efficacy of such an ink for assessing the photocatalytic activity of any photocatalytic film, including those employed on commercial self-cleaning glasses, tiles, and paving stones, is discussed briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The opportunistic bacterium Burkholderia cenocepacia C5424 contains two catalase/peroxidase genes, katA and katB. To investigate the functions of these genes, katA and katB mutants were generated by targeted integration of suicide plasmids into the katA and katB genes. The catalase/peroxidase activity of the katA mutant was not affected as compared with that of the parental strain, while no catalase/peroxidase activity was detected in the katB mutant. However, the katA mutant displayed reduced resistance to hydrogen peroxide under iron limitation, while the katB mutant showed hypersensitivity to hydrogen peroxide, and reduced growth under all conditions tested. The katA mutant displayed reduced growth only in the presence of carbon sources that are metabolized through the tricarboxylic acid (TCA) cycle, as the growth defect was abrogated in cultures supplemented with glucose or glycerol. This phenotype was also correlated with a marked reduction in aconitase activity. In contrast, aconitase activity was not reduced in the katB mutant and parental strains. The authors conclude that the KatA protein is a specialized catalase/peroxidase that has a novel function by contributing to maintain the normal activity of the TCA cycle, while KatB is a classical catalase/peroxidase that plays a global role in cellular protection against oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diverse parameters, including chaotropicity, can limit the function of cellular systems and thereby determine the extent of Earth's biosphere. Whereas parameters such as temperature, hydrophobicity, pressure, pH, Hofmeister effects, and water activity can be quantified via standard scales of measurement, the chao-/kosmotropic activities of environmentally ubiquitous substances have no widely accepted, universal scale. We developed an assay to determine and quantify chao-/kosmotropicity for 97 chemically diverse substances that can be universally applied to all solutes. This scale is numerically continuous for the solutes assayed (from +361kJkg-1mol-1 for chaotropes to -659kJkg-1mol-1 for kosmotropes) but there are key points that delineate (i) chaotropic from kosmotropic substances (i.e. chaotropes =+4; kosmotropes =-4kJkg-1mol-1); and (ii) chaotropic solutes that are readily water-soluble (log P<1.9) from hydrophobic substances that exert their chaotropic activity, by proxy, from within the hydrophobic domains of macromolecular systems (log P>1.9). Examples of chao-/kosmotropicity values are, for chaotropes: phenol +143, CaCl2 +92.2, MgCl2 +54.0, butanol +37.4, guanidine hydrochloride +31.9, urea +16.6, glycerol [>6.5M] +6.34, ethanol +5.93, fructose +4.56; for kosmotropes: proline -5.76, sucrose -6.92, dimethylsulphoxide (DMSO) -9.72, mannitol -6.69, trehalose -10.6, NaCl -11.0, glycine -14.2, ammonium sulfate -66.9, polyethylene glycol- (PEG-)1000 -126; and for relatively neutral solutes: methanol, +3.12, ethylene glycol +1.66, glucose +1.19, glycerol [<5M] +1.06, maltose -1.43 (kJkg-1mol-1). The data obtained correlate with solute interactions with, and structure-function changes in, enzymes and membranes. We discuss the implications for diverse fields including microbial ecology, biotechnology and astrobiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During alcoholic fermentation, the products build up and can, ultimately, kill the organism due to their effects on the cell's macromolecular systems. The effects of alcohols on the steady-state kinetic parameters of the model enzyme ß-galactosidase were studied. At modest concentrations (0 to 2 M), there was little effect of methanol, ethanol, propanol and butanol on the kinetic constants. However, above these concentrations, each alcohol caused the maximal rate, V (max), to fall and the Michaelis constant, K (m), to rise. Except in the case of methanol, the chaotropicity of the solute, rather than its precise chemical structure, determined and can, therefore, be used to predict inhibitory activity. Compounds which act as compatible solutes (e.g. glycerol and other polyols) generally reduced enzyme activity in the absence of alcohols at the concentration tested (191 mM). In the case of the ethanol- or propanol-inhibited ß-galactosidase, the addition of compatible solutes was unable to restore the enzyme's kinetic parameters to their uninhibited levels; addition of chaotropic solutes such as urea tended to enhance the effects of these alcohols. It is possible that the compatible solutes caused excessive rigidification of the enzyme's structure, whereas the alcohols disrupt the tertiary and quaternary structure of the protein. From the point of view of protecting enzyme activity, it may be unwise to add compatible solutes in the early stages of industrial fermentations; however, there may be benefits as the alcohol concentration increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three isolates each, of nine different Trametes and five other wood inhabiting basidiomycetes, were collected from the indigenous forests of Zimbabwe, and the impact of temperature (20-60 degrees C), osmotic and matric potential (-0.5 to - 8.0 MPa), and their interactions on in vitro growth compared. Generally, there was no significant difference between growth of isolates of the same species in relation to temperature. Temperature relationships of the species studied correlated well with their geographic distributions. Species occurring in hot, dry regions tolerated a wide temperature range, with some showing unusually high thermotolerance (55 degrees, T. socotrana, T. cingulata and T. cervina). There were significant intra-strain differences for individual species in relation to solute potential on glycerol-modified media. Generally, growth of ail species was better on glycerol- and KCl-modified osmotic media than on a metrically-modified medium (PEG 8000) at 25, 30 and 37 degrees. The limits for growth on the osmotic media were significantly wider than matric medium, being - 4.5 to - 5.0 and - 2.5 to - 4.5 MPa, respectively. An Irpex sp. grew at lower water potentials than all other species, with good growth at - 7.0 MPa. This study suggests that the capacity of these fungi for effective growth over a range of temperatures, osmotic and matric potentials contributes to their rapid wood decay capacities in tropical climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aqueous phase reforming (APR) of xylitol was studied in a continuous fixed bed reactor over three catalysts: Pt/Al2O3, Pt/TiO2 and Pt-Re/TiO2. The data obtained in the case of the monometallic Pt catalysts was compared to the bimetallic Pt-Re sample. The effect of Re addition on the catalyst stability, activity, product formation and selectivity toward hydrogen and alkanes was studied. The bimetallic catalyst demonstrated a higher selectivity to alkanes compared to the monometallic samples. The monometallic catalyst was more selective toward hydrogen formation. A plausible reaction scheme explaining differences in selectivity toward hydrogen and alkanes was proposed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actinobacteria perform essential functions within soils, and are dependent on available water to do so. We determined the water-activity (aw) limits for cell division of Streptomyces albidoflavus, Streptomyces rectiviolaceus, Micromonospora grisea and Micromonospora (JCM 3050) over a range of temperatures, using culture media supplemented with a biologically permissive solute (glycerol). Each species grew optimally at 0.998 aw (control; no added glycerol) and growth rates were near-optimal in the range 0.971–0.974 (1 M glycerol) at permissive temperatures. Each was capable of cell division at 0.916–0.924 aw (2 M glycerol), but only S. albidoflavus grew at 0.895 or 0.897 aw (3 M glycerol, at 30 and 37°C respectively). For S. albidoflavus, however, no growth occurred on media at ≤ 0.870 (4 M glycerol) during the 40-day assessment period, regardless of temperature, and a theoretical limit of 0.877 aw was derived by extrapolation of growth curves. This level of solute tolerance is high for non-halophilic bacteria, but is consistent with reported limits for the growth and metabolic activities of soil microbes. The limit, within the range 0.895–0.870 aw, is very much inferior to those for obligately halophilic bacteria and extremely halophilic or xerophilic fungi, and is inconsistent with earlier reports of cell division at 0.500 aw. These findings are discussed in relation to planetary protection policy for space exploration and the microbiology of arid soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial habitats that contain an excess of carbohydrate in the form of sugar are widespread in the microbial biosphere. Depending on the type of sugar, prevailing water activity and other substances present, sugar-rich environments can be highly dynamic or relatively stable, osmotically stressful, and/or destabilizing for macromolecular systems, and can thereby strongly impact the microbial ecology. Here, we review the microbiology of different high-sugar habitats, including their microbial diversity and physicochemical parameters, which act to impact microbial community assembly and constrain the ecosystem. Saturated sugar beet juice and floral nectar are used as case studies to explore the differences between the microbial ecologies of low and higher water-activity habitats respectively. Nectar is a paradigm of an open, dynamic and biodiverse habitat populated by many microbial taxa, often yeasts and bacteria such as, amongst many others, Metschnikowia spp. and Acinetobacter spp., respectively. By contrast, thick juice is a relatively stable, species-poor habitat and is typically dominated by a single, xerotolerant bacterium (Tetragenococcus halophilus). A number of high-sugar habitats contain chaotropic solutes (e.g. ethyl acetate, phenols, ethanol, fructose and glycerol) and hydrophobic stressors (e.g. ethyl octanoate, hexane, octanol and isoamyl acetate), all of which can induce chaotropicity-mediated stresses that inhibit or prevent multiplication of microbes. Additionally, temperature, pH, nutrition, microbial dispersion and habitat history can determine or constrain the microbiology of high-sugar milieux. Findings are discussed in relation to a number of unanswered scientific questions.