70 resultados para Biting force


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the struggle to assert and consolidate its power, the Hamas movement of the Palestinian territories has devised several strategies for control. In recognition that control of security remains a key goal for any power-seeker, following its election victory in January 2006, Hamas entered into a fierce and ultimately successful conflict with Fatah for control of the Palestinian Authority Ministry of Interior and Palestinian Security Forces (PSF) in the Gaza Strip. One way in which Hamas was able to achieve this objective was through the creation of its own internal ‘police’ force called the Tanfithya (Executive Force or EF). This article details an anatomy of the EF and the implications of this force in terms of Hamas' confrontation with opponents and its attempts at governance. It also examines the extent to which the EF can be considered to be a model of Islamic policing and its impact on secular rivals in the Gaza Strip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A force field model of the Keating type supplemented by rules to break, form, and interchange bonds is applied to investigate thermodynamic and structural properties of the amorphous SiO2 surface. A simulated quench from the liquid phase has been carried out for a silica sample made of 3888 silicon and 7776 oxygen atoms arranged on a slab similar to 40 angstrom thick, periodically repeated along two directions. The quench results into an amorphous sample, exposing two parallel square surfaces of similar to 42 nm(2) area each. Thermal averages computed during the quench allow us to determine the surface thermodynamic properties as a function of temperature. The surface tension turns out to be gamma=310 +/- 20 erg/cm(2) at room temperature and gamma=270 +/- 30 at T=2000 K, in fair agreement with available experimental estimates. The entropy contribution Ts-s to the surface tension is relatively low at all temperatures, representing at most similar to 20% of the surface energy. Almost without exceptions, Si atoms are fourfold coordinated and oxygen atoms are twofold coordinated. Twofold and threefold rings appear only at low concentration and are preferentially found in proximity of the surface. Above the glass temperature T-g=1660 +/- 50 K, the mobility of surface atoms is, as expected, slightly higher than that of bulk atoms. The computation of the height-height correlation function shows that the silica surface is rough in the equilibrium and undercooled liquid phase, becoming smooth below the glass temperature T-g.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a linear lightweight electric cylinder constructed using shape memory alloy (SMA) is proposed. Spring SMA is used as the actuator to control the position and force of the cylinder rod. The model predictive control algorithm is investigated to compensate SMA hysteresis phenomenon and control the cylinder. In the predictive algorithm, the future output of the cylinder is computed based on the cylinder model, and the control signal is computed to minimize the error and power criterion. The cylinder model parameters are estimated by an online identification algorithm. Experimental results show that the SMA cylinder is able to precisely control position and force by using the predictive control strategy though the hysteresis effect existing in the actuator. The performance of the proposed controller is compared with that of a conventional PID controller

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Britain's labour force industrialised early. The industrial and service sectors already accounted for 40% of the labour force in 1381, and a substantial further shift of labour out of agriculture occurred between 1522 and 1700. From the early seventeenth century rising agricultural labour productivity underpinned steadily increasing employment in industry and services, so that by 1759 agriculture's share of the labour force had shrunk to 37% and industry's grown to 34%. Thereafter, industry's output acceleration during the Industrial Revolution owed more to gains in labour productivity consequent upon mechanisation than the expansion of employment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a mechanism for cooling atoms by a laser beam reflected from a single mirror. The cooling relies on the dipole force and thus in principle applies to arbitrary refractive particles including atoms, molecules, or dielectric spheres. Friction and equilibrium temperatures are derived by an analytic perturbative approach. Finally, semiclassical Monte-Carlo simulations are performed to validate the analytic results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term `laser cooling' is applied to the use of optical means to cool the motional energies of either atoms and molecules, or micromirrors. In the literature, these two strands are kept largely separate; both, however suffer from severe limitations. Laser cooling of atoms and molecules largely relies on the internal level structure of the species being cooled. As a result, only a small number of elements and a tiny number of molecules can be cooled this way. In the case of micromirrors, the problem lies in the engineering of micromirrors that need to satisfy a large number of constraints---these include a high mechanical Q-factor, high reflectivity and very good optical quality, weak coupling to the substrate, etc.---in order to enable efficient cooling. During the course of this thesis, I will draw these two sides of laser cooling closer together by means of a single, generically applicable scattering theory that can be used to explain the interaction between light and matter at a very general level. I use this `transfer matrix' formalism to explore the use of the retarded dipole--dipole interaction as a means of both enhancing the efficiency of micromirror cooling systems and rendering the laser cooling of atoms and molecules less species selective. In particular, I identify the `external cavity cooling' mechanism, whereby the use of an optical memory in the form of a resonant element (such as a cavity), outside which the object to be cooled sits, can potentially lead to the construction of fully integrated optomechanical systems and even two-dimensional arrays of translationally cold atoms, molecules or even micromirrors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming to establish a rigorous link between macroscopic random motion (described e.g. by Langevin-type theories) and microscopic dynamics, we have undertaken a kinetic-theoretical study of the dynamics of a classical test-particle weakly coupled to a large heat-bath in thermal equilibrium. Both subsystems are subject to an external force field. From the (time-non-local) generalized master equation a Fokker-Planck-type equation follows as a "quasi-Markovian" approximation. The kinetic operator thus defined is shown to be ill-defined; in specific, it does not preserve the positivity of the test-particle distribution function f(x, v; t). Adopting an alternative approach, previously introduced for quantum open systems, is proposed to lead to a correct kinetic operator, which yields all the expected properties. A set of explicit expressions for the diffusion and drift coefficients are obtained, allowing for modelling macroscopic diffusion and dynamical friction phenomena, in terms of an external field and intrinsic physical parameters.