131 resultados para Biodegradable composites
Resumo:
This article investigates the damage imparted on load-bearing carbon fibers during the 3D weaving process and the subsequent compaction behavior of 3D woven textile preforms. The 3D multi-layer reinforcements were manufactured on a textile loom with few mechanical modifications to produce preforms with fibers orientated in the warp, weft, and through-the-thickness directions. Tensile tests were conducted on three types of commercially available carbon fibers, 12k HTA, 6k HTS, and 3k HTS in an attempt to quantify the effect of fiber damage induced during the 3D weaving process on the mechanical and physical performance of the fiber tows in the woven composite. The tests were conducted on fiber tows sampled from different locations in the manufacturing process from the bobbin, through the creel and loom mechanism, to the final woven fabric. Mechanical and physical testing were then conducted to quantify the tow geometry, orientation and the effect of compaction during manufacture of two styles of 3D woven composite by vacuumassisted resin transfer molding (VaRTM).
Resumo:
An analytical modeling approach for the prediction of the geometric characteristics of five-dimensional (5D) woven composites has been formulated. The model is driven by readily available data including the weaving parameters and constituent material properties. The new model calculates the individual proportions of fiber in each direction, areal density, overall fiber volume fraction, and laminate thickness. This information is useful for the engineer in the design and manufacture of 5D woven composites. In addition the present model outputs the mathematical definition of the 5D woven composite unit cell, which could be implemented as the geometric input for a downstream analytical model that is capable of predicting the elastic stiffness of 5D woven composites. Input parameters have been sourced from existing published work and the subsequent predictions made by the model are compared with the available experimental data on 5D woven composites.
Resumo:
Composites of poly(e-caprolactone) (PCL) and molybdenum sulfur iodine (MoSI) nanowires were prepared using twin-screw extrusion. Extensive microscopic examination of the composites revealed the nanowires were well dispersed in the PCL matrix, although bundles of Mo6S3I6 ropes were evident at higher loadings. Secondary electron imaging (SEI) showed the nanowires had formed an extensive network throughout the PCL matrix, resulting in increased electrical conductivity of PCL, by eight orders of magnitude, and an electrical percolation threshold of 6.5T10S3vol%. Thermal analysis (DSC), WAXD, and hot stage polarized optical microscopy (HSPOM) experiments revealed Mo6S3I6 addition altered PCL crystallization kinetics, nucleation density, and crystalline content. A greater number of smaller spherulites were formed via heterogeneous nucleation. The onset of thermal decomposition (TGA) of PCL decreased by 70-C, a consequence of the thermal degradation of Mo6S3I6 to MoO3, which in turn accelerates the formation of volatile gases during the first stage of PCL decomposition.
Resumo:
The strategic incorporation of bioresorbable polymeric additives to calcium-deficient hydroxyapatite cement may provide short-term structural reinforcement and modify the modulus to closer match bone. The longer-term resorption properties may also be improved, creating pathways for bone in-growth. The aim of this study was to investigate the resorption process of a calcium phosphate cement system containing either in polyglycolic acid tri-methylene carbonate particles or polyglycolic acid fibres. This was achieved by in vitro aging in physiological conditions (phosphate buffered solution at 37°C) over 12 weeks. The unreinforced CPC exhibited an increase in compressive strength at 12 weeks, however catastrophic failure was observed above a critical loading. The fracture behaviour of cement was improved by the incorporation of PGA fibres; the cement retained its cohesive structure after critical loading. Gravimetric analysis and scanning electron microscopy showed a large proportion of the fibres had resorbed after 12 weeks allowing for the increased cement porosity, which could facilitate cell infiltration and faster integration of natural bone. Incorporating the particulate additives in the cement did not provide any mechanism for mechanical property augmentation or did not demonstrate any appreciable level of resorption after 12 weeks.