203 resultados para Bio-responsive drug delivery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light and photosensitizer-mediated killing of many pathogens, termed photodynamic antimicrobial chemotherapy (PACT), has been extensively investigated in vitro. A wide range of organisms from the Gram-positive Staphylococcus aureus to the Gram-negative Pseudomonas aeruginosa have been proven to be susceptible to PACT. Multidrug-resistant strains are just as susceptible to this treatment as their naive counterparts. Both enveloped and non-enveloped viruses have demonstrated susceptibility in vitro, in addition to fungi and protozoa. Significantly, however, no clinical treatments based on PACT are currently licensed. This paper provides a comprehensive review of work carried out to date on delivery of photosensitizers for use in PACT, including topical, intranasal and oral/buccal delivery, as well as targeted delivery. We have also reviewed photo-antimicrobial surfaces. It is hoped that, through a rational approach to formulation design and subsequent success in small-scale clinical trials, more widespread use will be made of PACT in the clinic, to the benefit of patients worldwide. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analogue of the bisphosphonate drug Ibandronate was prepared and coupled via a cleavable ester function to a bromoacetyl linker with specific reactivity for thiol groups. This compound should find useful applications in therapeutic strategies aiming to deliver bisphosphonate drugs specifically to cancer cells making use of proteins as vectors. The specific delivery of bisphosphonates to cancer cells instead of bone, the usual site of accumulation of these cytotoxic drugs, could greatly widen their therapeutic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight <500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: