62 resultados para Beta-sheet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In human neutrophils, beta2 integrin engagement mediated a decrease in GTP-bound Rac1 and Rac2. Pretreatment of neutrophils with LY294002 or PP1 (inhibiting phosphatidylinositol 3-kinase (PI 3-kinase) and Src kinases, respectively) partly reversed the beta2 integrin-induced down-regulation of Rac activities. In contrast, beta2 integrins induced stimulation of Cdc42 that was independent of Src family members. The PI 3-kinase dependency of beta2 integrin-mediated decrease in GTP-bound Rac could be explained by an enhanced Rac-GAP activity, since this activity was blocked by LY204002, whereas PP1 only had a minor effect. The fact that only Rac1 but not Rac2 (the dominating Rac) redistributed to the detergent-insoluble fraction and that it was independent of GTP loading excludes the possibility that down-regulation of Rac activities was due to depletion of GTP-bound Rac from the detergent-soluble fraction. The beta2 integrin-triggered relocalization of Rac1 to the cytoskeleton was enabled by a PI 3-kinase-induced dissociation of Rac1 from LyGDI. The dissociations of Rac1 and Rac2 from LyGDI also explained the PI 3-kinase-dependent translocations of Rac GTPases to the plasma membrane. However, these accumulations of Rac in the membrane, as well as that of p47phox and p67phox, were also regulated by Src tyrosine kinases. Inasmuch as Rac GTPases are part of the NADPH oxidase and the respiratory burst is elicited in neutrophils adherent by beta2 integrins, our results indicate that activation of the NADPH oxidase does not depend on the levels of Rac-GTP but instead requires a beta2 integrin-induced targeting of the Rac GTPases as well as p47phox and p67phox to the plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is well established that benzimidazole (BZMs) compounds exert their therapeutic effects through binding to helminth beta-tubulin and thus disrupting microtubule-based processes in the parasites, the precise location of the benzimidazole-binding site on the beta-tubulin molecule has yet to be determined. In the present study, we have used previous experimental data as cues to help identify this site. Firstly, benzimidazole resistance has been correlated with a phenylalanine-to-tyrosine substitution at position 200 of Haemonchus contortus beta-tubulin isotype-I. Secondly, site-directed mutagenesis studies, using fungi, have shown that other residues in this region of the protein can influence the interaction of benzimidazoles with beta-tubulin. However, the atomic structure of the alphabeta-tubulin dimer shows that residue 200 and the other implicated residues are buried within the protein. This poses the question: how might benzimidazoles interact with these apparently inaccessible residues? In the present study, we present a mechanism by which those residues generally believed to interact with benzimidazoles may become accessible to the drugs. Furthermore, by docking albendazole-sulphoxide into a modelled H. contortus beta-tubulin molecule we offer a structural explanation for how the mutation conferring benzimidazole resistance in nematodes may act, as well as a possible explanation for the species-specificity of benzimidazole anthelmintics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We found that engagement of beta 2 integrins on human neutrophils increased the levels of GTP-bound Rap1 and Rap2. Also, the activation of Rap1 was blocked by PP1, SU6656, LY294002, GF109203X, or BAPTA-AM, which indicates that the downstream signaling events in Rap1 activation involve Src tyrosine kinases, phosphoinositide 3-kinase, protein kinase C, and release of calcium. Surprisingly, the integrin-induced activation of Rap2 was not regulated by any of the signaling pathways mentioned above. However, we identified nitric oxide as the signaling molecule involved in beta 2 integrin-induced activation of Rap1 and Rap2. This was illustrated by the fact that engagement of beta 2 integrins increased the production of nitrite, a stable end-product of nitric oxide. Furthermore, pretreatment of neutrophils with N-monomethyl-L-arginine, or 1400W, which are inhibitors of inducible nitric-oxide synthase, blocked integrin-induced activation of Rap1 and Rap2. Similarly, Rp-8pCPT-cGMPS, an inhibitor of cGMP-dependent serine/threonine kinases, also blunted the integrin-induced activation of Rap GTPases. Also nitric oxide production and its downstream activation of cGMP-dependent serine/threonine kinases were essential for proper neutrophil adhesion by beta 2 integrins. Thus, we made the novel findings that beta 2 integrin engagement on human neutrophils triggers production of nitric oxide and its downstream signaling is essential for activation of Rap GTPases and neutrophil adhesion.