34 resultados para Bacteriophage T7


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complete sequence of the 46,267 bp genome of the lytic bacteriophage tf specific to Pseudomonas putida PpG1 has been determined. The phage genome has two sets of convergently transcribed genes and 186 bp long direct terminal repeats. The overall genomic architecture of the tf phage is similar to that of the previously described Pseudomonas aeruginosa phages PaP3, LUZ24 and phiMR299-2, and 39 out of the 72 products of predicted tf open reading frames have orthologs in these phages. Accordingly, tf was classified as belonging to the LUZ24-like bacteriophage group. However, taking into account very low homology levels between tf DNA and that of the other phages, tf should be considered as an evolutionary divergent member of the group. Two distinguishing features not reported for other members of the group were found in the tf genome. Firstly, a unique end structure - a blunt right end and a 4-nucleotide 3'-protruding left end - was observed. Secondly, 14 single-chain interruptions (nicks) were found in the top strand of the tf DNA. All nicks were mapped within a consensus sequence 5'-TACT/RTGMC-3'. Two nicks were analyzed in detail and were shown to be present in more than 90% of the phage population. Although localized nicks were previously found only in the DNA of T5-like and phiKMV-like phages, it seems increasingly likely that this enigmatic structural feature is common to various other bacteriophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yersinia enterocolitica (Ye) is a gram-negative bacterium; Ye serotype O:3 expresses lipopolysaccharide (LPS) with a hexasaccharide branch known as the outer core (OC). The OC is important for the resistance of the bacterium to cationic antimicrobial peptides and also functions as a receptor for bacteriophage phiR1-37 and enterocoliticin. The biosynthesis of the OC hexasaccharide is directed by the OC gene cluster that contains nine genes (wzx, wbcKLMNOPQ, and gne). In this study, we inactivated the six OC genes predicted to encode glycosyltransferases (GTase) one by one by nonpolar mutations to assign functions to their gene products. The mutants expressed no OC or truncated OC oligosaccharides of different lengths. The truncated OC oligosaccharides revealed that the minimum structural requirements for the interactions of OC with bacteriophage phiR1-37, enterocoliticin, and OC-specific monoclonal antibody 2B5 were different. Furthermore, using chemical and structural analyses of the mutant LPSs, we could assign specific functions to all six GTases and also revealed the exact order in which the transferases build the hexasaccharide. Comparative modeling of the catalytic sites of glucosyltransferases WbcK and WbcL followed by site-directed mutagenesis allowed us to identify Asp-182 and Glu-181, respectively, as catalytic base residues of these two GTases. In general, conclusive evidence for specific GTase functions have been rare due to difficulties in accessibility of the appropriate donors and acceptors; however, in this work we were able to utilize the structural analysis of LPS to get direct experimental evidence for five different GTase specificities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa causes chronic lung infections in people with cystic fibrosis (CF) and acute opportunistic infections in people without CF. Forty two P. aeruginosa strains from a range of clinical and environmental sources were collated into a single reference strain panel to harmonise research on this diverse opportunistic pathogen. To facilitate further harmonized and comparable research on P. aeruginosa, we characterised the panel strains for growth rates, motility, virulence in the Galleria mellonella infection model, pyocyanin and alginate production, mucoid phenotype, lipopolysaccharide (LPS) pattern, biofilm formation, urease activity, antimicrobial and phage susceptibilities. Phenotypic diversity across the P. aeruginosa panel was apparent for all phenotypes examined agreeing with the marked variability seen in this species. However, except for growth rate, the phenotypic diversity among strains from CF versus non-CF sources was comparable. CF strains were less virulent in the G. mellonella model than non-CF strains (p=0.037). Transmissible CF strains generally lacked O antigen, produced less pyocyanin, and had low virulence in G. mellonella. Further, in the three sets of sequential CF strains, virulence, O-antigen expression and pyocyanin production were higher in the earlier isolate compared to the isolate obtained later in infection. Overall, full phenotypic characterization of the defined panel of P. aeruginosa strains increases our understanding of the virulence and pathogenesis of P. aeruginosa and may provide a valuable resource for the testing of novel therapies against this problematic pathogen.