51 resultados para BaMoO4 powders
Resumo:
Several commercial titania photocatalyst powders were formed into thin (ca. 350 mu m), 25 mm diameter ceramic wafers, sputter deposited with Pt on one side. The activities of each of the ceramic wafers were tested for hydrogen and oxygen evolution from aqueous sacrificial systems. The commercial sample PC50 (Millennium Chemicals, UK) yielded reproducible ceramic wafers with high activity for water photoreduction. Many of the ceramic wafers displayed low water photo-oxidation activities; however, these were greatly increased with addition of a NiO co-catalyst. In a selected case, hydrogen evolution activity was compared between a PC50 wafer and an identical weight of platinised PC50 powder suspension. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Transient absorption spectroscopy (TAS) has been used to study the interfacial electron-transfer reaction between photogenerated electrons in nanocrystalline titanium dioxide (TiO2) films and molecular oxygen. TiO2 films from three different starting materials (TiO2 anatase colloidal paste and commercial anatase/rutile powders Degussa TiO2 P25 and VP TiO2 P90) have been investigated in the presence of ethanol as a hole scavenger. Separate investigations on the photocatalytic oxygen consumption by the films have also been performed with an oxygen membrane polarographic detector. Results show that a correlation exists between the electron dynamics of oxygen consumption observed by TAS and the rate of oxygen consumption through the photocatalytic process. The highest activity and the fastest oxygen reduction dynamics were observed with films fabricated from anatase TiO2 colloidal paste. The use of TAS as a tool for the prediction of the photocatalytic activities of the materials is discussed. TAS studies indicate that the rate of reduction of molecular oxygen is limited by interfacial electron-transfer kinetics rather than by the electron trapping/detrapping dynamics within the TiO2 particles.
Resumo:
The kinetics of catalysis of a number of new and established heterogeneous O2 catalysts have been studied using Ce(IV) as the oxidant via both the disappearance of the Ce(IV) ions and concomitant appearance of O2. The most active of the catalysts tested utilised a PGM(IV) oxide, usually Ru or Ir, prepared by the Adams method, which appears to generate microcrystalline powders with high surface areas and optimum activities per unit area.
Resumo:
The production of stable homogeneous reference materials containing the antimicrobial agent sulphadimidine in pig tissue is described. These were commissioned by the Community Bureau of Reference (BCR), established by the Commission of the European Communities, to promote improvements in analytical accuracy and to ensure uniformity of results determined by member states. Sulphadimidine-containing tissue powders (400 vials each of muscle, liver and kidney) were prepared by orally dosing pigs with drug, producing lyophilized tissue powders and blending these with negative tissues from unmedicated animals to achieve target concentrations. Details of the production process, the stabilizing procedure developed and the analytical assessments of homogeneity and stability are given.
Resumo:
This study investigates a model system for potential pharmaceutical materials in fluidised bed processes. In particular, this study proposes a novel use of Raman spectroscopy, which allows in situ measurement of the composition of the material within the fluidised bed in three spatial dimensions and as a function of time. This is achieved by recording Raman spectra from specific volumes of space. The work shows that Raman spectroscopy can be used to provide 3D maps of the concentration and chemical structure of the particles in a fluidised bed within a relatively short (120 s) time window. At the most basic level the technique measures particle density via the intensity of the Raman spectra, however this could be used. More importantly the data are also rich in spectroscopic information on the chemical structure of the fluidised particles which is useful either for monitoring a given granulation process or more generally for the analysis of the dynamics of the airflow if the data were incorporated into an appropriate model. The technique has the potential to give detailed in situ information on how the structure and composition of the granules/powders within the fluidised bed (dryer or granulator) vary with the position and evolve with time. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Generally, the solid and liquid fractions (digestate) from Anaerobic Digestion (AD) energy production are considered as waste. This has a negative impact on the sustainability of AD processes because of the financial outlay required to treat digestate before being discharged into municipal water treatment plants or natural water bodies. The main aim of this research was to investigate feasibility of producing an organic fertiliser using anaerobic digestate and limestone powders as the raw materials employing a high shear granulation process. Two-level factorial experimental design was used to determine the influence of granulation process variables on, the strength, resistance to attrition and yield of the granules. It was concluded from the study that it is technically feasible to produce organic fertiliser granules of acceptable strength and product yield. Increasing the liquid-to-solid ratio during granulation leads to increased granule strength and better product yield. Although the strength of the granules produced was lower than typical strength of commercial synthetic fertiliser granules (about 5 to 7. MPa), this could be improved by mixing the digestate with a polymeric binder or coating the particles post granulation. © 2012 Elsevier B.V.
Resumo:
In most granulation processes involving processing of a mixture of powders, the powders have comparable densities and similar particle size distributions. Granulation of powders with large variation differences in powder densities is usually avoided due problems such as particle segregation. The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities.The overall aim of the project was to obtain a granular product in
the size range 2 to 4mm. The two powders were granulated in different proportions using carboxymethyl cellose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of tea wasted on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation.Increasing the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to achieve the desired product yield. It was found that attrition losses decreased with increasing binder content.
Resumo:
This work describes the development of spray dried polymer coated liposomes composed of soy phosphatidylcholine (SPC) and phospholipid dimyristoyl phosphatidylglycerol (DMPG) coated with alginate, chitosan or trimethyl chitosan (TMC), that are able to penetrate through the nasal mucosa and offer enhanced penetration over uncoated liposomes when delivered as a dry powder. All the liposome formulations, loaded with BSA as model antigen, were spray-dried to obtain powder size and liposome size in a suitable range for nasal delivery. Although coating resulted in some reduction in encapsulation efficiency, levels were still maintained between 60% and 69% and the structural integrity of the entrapped protein and its release characteristics were maintained. Coating with TMC gave the best product characteristics in terms of entrapment efficiency, glass transition (Tg) and mucoadhesive strength, while penetration of nasal mucosal tissue was very encouraging when these liposomes were administered as dispersions although improved results were observed for the dry powders
Resumo:
A series of nanostructured Ni-Zn ferrites Ni1-xZnxFe2O4 (x=0, 0.5 and 1) with a grain size from 24 to 65 nm have been prepared with a sol-gel method. The effect of composition and sintering temperature on morphology, magnetic properties, Curie temperature, specific heating rate at 295 kHz and hysteresis loss have been studied. The highest coercivity of 50 and 40 Oe, were obtained for NiFe2O4 and Ni0.5Zn0.5Fe2O4 samples with the grain size of 35 and 29 nm, respectively. The coercivity of Ni and Ni-Zn mixed ferrites decreased with temperature. The Bloch exponent was 1.5 for all samples. As the grain size increased, the Curie temperature of NiFe2O4 increased from 849 to 859 K. The highest saturation magnetization of 70 emu/g at 298 K and the highest specific heating rate of 1.6 K/s under radiofrequency heating at 295 kHz were observed over NiFe2O4 calcined at 1073 K. Both the magnitude of the hysteresis loss and the temperature dependence of the loss are influenced by the sintering temperature and composition.
Resumo:
This paper reports on a technical feasibility study of the production of organo-mineral fertiliser from the co-granulation of limestone powders with tea waste. The results from this preliminary study show that the co-granulation of tea waste provided an alternative method of waste recovery, as it converts the waste into a value-added product. Fertiliser granules were successfully produced from various compositions of limestone and tea waste. The effect of tea waste concentration on granule strength was analysed; the granule strength
was in the range 0.2 to 1.8 MPa depending on powder composition; increasing the tea waste mass fraction resulted in a reduction in granule strength.Varying the teawaste to limestone ratio also influenced the compressibility of the granules; the granules compressibility increased with increasing tea waste mass fraction. It was further found that increasing the mass fraction of tea waste in the binary mixture of powder reduced the granule median size of the batch.
Resumo:
The granular product being designed in this work required the use of two different powders namely limestone and teawaste; these materials have different bulk and particle densities. The overall aim of the project was to obtain a granular product in the size range of 2 to 4. mm. The two powders were granulated in different proportions using carboxymethylcellulose (CMC) as the binder. The effect of amount of binder added, relative composition of the powder, and type of teawaste on the product yield was studied. The results show that the optimum product yield was a function of both relative powder composition and the amount of binder used; increasing the composition of teawaste in the powder increased the amount of binder required for successful granulation. An increase in the mass fraction of teawaste in the powder mix must be accompanied by an increase in the amount of binder to maintain the desired product yield.
Resumo:
The concept of green concrete has been progressively introduced in concrete technology. At the same time, new generations of superplasticisers have become widely available and self-compacting concrete is being increasingly implemented. The aim of this research is to study the impact that different sustainable materials have on both fresh and hardened properties of Self-Compacting Fibre Reinforced Concrete (SCFRC) in order to implement their use in a precast concrete company. Different combinations of cement, mineral additions (active and inert), polypropylene fibres, superplasticisers, and aggregates have been considered. Fresh state performance has been assessed by means of: slump flow test, V-funnel, and J-ring. Concrete compressive strength values at different ages have been retained as representative of the material's performance in its hardened state. All these properties have been correlated with SCFRC proportioning parameters. The importance of interactions between mineral additions and between these and superplasticiser is emphasised, as well as the different consequences of using powders as cement replacement or as mineral additions.
Optimisation of Environment-friendly SCFRC mixes use in precast Concrete Industry (PDF Download Available). Available from: http://www.researchgate.net/publication/263304799_Optimisation_of_Environment-friendly_SCFRC_mixes_use_in_precast_Concrete_Industry [accessed Jun 5, 2015].
Resumo:
Although the use of ball milling to induce reactions between solids (mechanochemical synthesis) can provide lower-waste routes to chemical products by avoiding solvent during the reaction, there are further potential advantages in using one-pot multistep syntheses to avoid the use of bulk solvents for the purification of intermediates. We report here two-step syntheses involving formation of salen-type ligands from diamines and hydroxyaldehydes followed directly by reactions with metal salts to provide the corresponding metal complexes. Five salen-type ligands 2,2'-[1,2-ethanediylbis[(E)-nitrilomethylidyne]] bisphenol, ` salenH2', 1; 2,2'-[(+/-)-1,2-cyclohexanediylbis-[(E)-nitrilomethylidyne]] bis-phenol, 2; 2,2'-[1,2-phenylenebis( nitrilomethylidyne)]-bis-phenol, ` salphenH2' 3; 2-[[(2-aminophenyl) imino] methyl]-phenol, 4; 2,2'-[(+/-)-1,2-cyclohexanediylbis[(E)-nitrilomethylidyne]]-bis[4,6-bis(1,1-dimethylethyl)]-phenol, ` Jacobsen ligand', 5) were found to form readily in a shaker-type ball mill at 0.5 to 3 g scale from their corresponding diamine and aldehyde precursors. Although in some cases both starting materials were liquids, ball milling was still necessary to drive those reactions to completion because precipitation of the product and or intermediates rapidly gave in thick pastes which could not be stirred conventionally. The only ligand which required the addition of solvent was the Jacobsen ligand 5 which required 1.75 mol equivalents of methanol to go to completion. Ligands 1-5 were thus obtained directly in 30-60 minutes in their hydrated forms, due to the presence of water by-product, as free-flowing yellow powders which could be dried by heating to give analytically pure products. The one-armed salphen ligand 4 could also be obtained selectively by changing the reaction stoichiometry to 1 : 1. SalenH(2) 1 was explored for the onepot two-step synthesis of metal complexes. In particular, after in situ formation of the ligand by ball milling, metal salts (ZnO, Ni(OAc)2 center dot 4H(2)O or Cu(OAc)(2)center dot H2O) were added directly to the jar and milling continued for a further 30 minutes. Small amounts of methanol (0.4-1.1 mol equivalents) were needed for these reactions to run to completion. The corresponding metal complexes [M(salen)] (M = Zn, 6; Ni, 7; or Cu, 8) were thus obtained quantitatively after 30 minutes in hydrated form, and could be heated briefly to give analytically pure dehydrated products. The all-at-once ` tandem' synthesis of [Zn(salen)] 6 was also explored by milling ZnO, ethylene diamine and salicylaldehyde together in the appropriate mole ratio for 60 minutes. This approach also gave the target complex selectively with no solvent needing to be added. Overall, these syntheses were found to be highly efficient in terms of time and the in avoidance of bulk solvent both during the reaction and for the isolation of intermediates. The work demonstrates the applicability of mechanochemical synthesis to one-pot multi-step strategies.
Resumo:
Thermal barrier coatings (TBCs) are widely adopted to protect mechanical components in gas turbine engines operating at high temperature. Basically, the surface temperature of these components must be low enough to retain material properties within acceptable bounds and to extend component life. From this standpoint, air plasma-sprayed (APS) ceria and yttria co-stabilized zirconia (CYSZ) is particularly promising because it provides enhanced thermal insulation capabilities and resistance to hot corrosion. However, essential mechanical properties, such as hardness and Young's modulus, have been less thoroughly investigated. Knowledge of Young's modulus is of concern because it has a significant effect on strain tolerance and stress level and, hence, on durability. The focus of the present study was to determine the mechanical properties of APS CYSZ coatings. In particular, X-ray diffraction (XRD) is adopted for phase analysis of powders and as-sprayed coatings. In addition, scanning electron microscopy (SEM) and image analysis (IA) are employed to explore coating microstructure and porosity. Finally, the Young's modulus of the coating is determined using nanoindentation and a resonant method. The results obtained are then discussed and a cross-check on their consistency is carried out by resorting to a micromechanical model. © 2010 Blackwell Publishing Ltd.
Resumo:
A new process for the preparation and surface modification of submicron YAl2 intermetallic particles was proposed to control the agglomeration of ultrafine YAl2 particles and interface in the fabrication of YAl2p/MgLiAl composites. The morphological and structural evolution during mechanical milling of YAl2 powders (< 30 μm) with magnesium particles (~ 100 μm) has been characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that YAl2 particles are refined to submicron scale and separately cladded in magnesium coatings after mixed milling with magnesium particles for 20 h. Mechanical and metallurgical bonds have been found in YAl2/Mg interfaces without any interface reactions. Both the refining and mechanical activation efficiencies for YAl2 particles are enhanced, which may be related to the addition of magnesium particles leading to atomic solid solution and playing a role as “dispersion stabilizer”.