157 resultados para Bäck, Erik Johan,


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age-related macular degeneration (AMD) is the most common cause of incurable visual impairment in high-income countries. Previous studies report inconsistent associations between AMD and apolipoprotein E (APOE), a lipid transport protein involved in low-density cholesterol modulation. Potential interaction between APOE and sex, and smoking status has been reported. We present a pooled analysis (n = 21,160) demonstrating associations between late AMD and APOe4 (odds ratio [OR] = 0.72 per haplotype; confidence interval [CI]: 0.65-0.74; P = 4.41×10(-11) ) and APOe2 (OR = 1.83 for homozygote carriers; CI: 1.04-3.23; P = 0.04), following adjustment for age group and sex within each study and smoking status. No evidence of interaction between APOE and sex or smoking was found. Ever smokers had significant increased risk relative to never smokers for both neovascular (OR = 1.54; CI: 1.38-1.72; P = 2.8×10(-15) ) and atrophic (OR = 1.38; CI: 1.18-1.61; P = 3.37×10(-5) ) AMD but not early AMD (OR = 0.94; CI: 0.86-1.03; P = 0.16), implicating smoking as a major contributing factor to disease progression from early signs to the visually disabling late forms. Extended haplotype analysis incorporating rs405509 did not identify additional risks beyond e2 and e4 haplotypes. Our expanded analysis substantially improves our understanding of the association between the APOE locus and AMD. It further provides evidence supporting the role of cholesterol modulation, and low-density cholesterol specifically, in AMD disease etiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel class of anionic surfactants was prepared through the neutralization of pyrrolidine or imidazole by alkylcarboxylic acids. The compounds, namely the pyrrolidinium alkylcarboxylates ([Pyrr][CnH2n+1COO]) and imidazolium alkylcarboxylates ([Im][CnH2n+1COO]), were obtained as ionic liquids at room temperature. Their aggregation behavior has been examined as a function of the alkyl chain length (from n = 5 to 8) by surface tensiometry and conductivity. Decreases in the critical micelle concentration (cmc) were obtained, for both studied PIL families, when increasing the anionic alkyl chain length (n). Surprisingly, a large effect of the alkyl chain length was observed on the minimum surface area per surfactant molecule (Amin) and, hence the maximum surface excess concentration (Gmax) when the counterion was the pyrrolidinium cation. This unusual comportment has been interpreted in term of a balance between van der Waals and coulombic interactions. Conductimetric measurements permit determination of the degree of ionization of the micelle (a) and the molar conductivity (?M) of these surfactants as a function of n. The molar conductivities at infinite dilution in water (?8) of the [Pyrr]+ and [Im]+ cations have been then determined by using the classical Kohlraush equation. Observed change in the physicochemical, surface, and micellar properties of these new protonic ionic liquid surfactants can be linked to the nature of the cation. By comparison with classical anionic surfactants having inorganic counterions, pyrrolidinium alkylcarboxylates and imidazolium alkylcarboxylates exhibit a higher ability to aggregate in aqueous solution, demonstrating their potential applicability as surfactant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dealuminated beta zeolites exchanged with Pd and Fe were prepared to investigate the influence of iron and dealumination on the activity and selectivity of Pd/BEA zeolite for toluene total oxidation. The specific areas determined by BET method and EPR studies allowed to know that the palladium would be more easily agglomerated on the BEA than on the DBEA. Moreover, a quantification of the palladium saturation on the BEA zeolite was deduced by EPR. Effects of dynamic and static oxidation and weak and strong reduction treatments were studied by EPR. Several isolated and interacted Pd+ species and hole centers were detected. The Pd was much reduced after the catalytic test in dealuminated and Fe doped samples. This result could be directly correlated to the catalytic deactivation. The deactivation could be also explain by the type of coke deposed on the catalyst and by the hydroscopic behavior of the samples. Addition of Fe or dealumination could prevent the deactivation and then lead to better catalysts for VOCs oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transformation of vaterite into calcite may be performed by heating in the presence and the absence of oxygen. Vaterite remains thermally stable until a calcination temperature of 450°C. It transforms progressively to calcite up to 500°C giving two exothermic peaks: 1) at 481°C due to the transformation of vaterite surface which is in contact with a small amount of calcite phase already formed with the time on the solid surface from the humidity atmosphere; 2) at 491°C due to the transformation of pure vaterite bulk. The calcite phase remains stable until 700°C. Above this temperature the formation of CaO is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New protic ionic liquids (PILs) based on the diisopropyl-ethylammonium cation have been synthesized through a simple and atom-economic neutralization reaction between the diisopropyl-ethylamine and selected carboxylic acid. Densities and rheological properties were then measured for two original diisopropyl-ethylammonium-based protic ionic liquids (heptanoate and octanoate) at 298.15 K and atmospheric pressure. The effect of the presence of water or acetonitrile on the measured values was also examined over the whole composition range at 298.15 K and atmospheric pressure. From these values, excess properties were calculated and correlated by using a Redlich-Kister-type equation. Finally, a qualitative analysis of the evolution of studied properties with the alkyl chain length of the anion and with the presence or not of water (or acetonitrile) was performed. From this analysis, it appears that selected PILs and their mixtures with water or acetonitrile have a non-Newtonian shear thickening behavior, and the addition of water or acetonitrile on these PILs increases this phenomena by the formation of aggregates in these media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Densities (F), viscosities (?), and isobaric heat molar capacities (Cp) of binary mixtures containing imidazolium octanoate, [Im][C7CO2], a protic ionic liquid (PIL), with four molecular solvents, water, acetonitrile, ethanol, and 1-octanol, are determined as a function of temperature from (298.15 to 323.15) K and within the whole composition range at atmospheric pressure. Excess molar volumes, VE, excess molar heat capacities, Cp E, and the deviation from additivity rules of viscosities, ??, of imidazolium octanoate solutions were then deduced from the experimental results, as well as apparent molar volumes, Vfi, and partial molar volumes, V j m,i. Results are discussed according to the nature of the interaction between the PIL and the molecules and the effect of temperature. The excess Gibbs energies of activation of viscous flow (?G*E) for these systems were then calculated at 298.15 K. The excess isobaric heat capacities, Cp E, of binary ([Im][C7CO2] + solvent) systems, depend also of the nature of the molecular solvent in mixture. The excess properties were then correlated, at each temperature, as a function of composition by a Redlich-Kister-type equation. Finally results have been discussed in terms of molecular interactions and molecular structures in these binary mixtures, and thermodynamic properties of investigated binary mixtures were then compared to literature values together to investigate the impact of the nature of the solvent on these reported properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Densities ([rho]) and viscosities ([eta]) of binary mixtures containing the Protic Ionic Liquid (PIL), pyrrolidinium octanoate with five molecular solvents: water, methanol, ethanol, n-butanol, and acetonitrile are determined at the atmospheric pressure as a function of the temperature and within the whole composition range. The refractive index of all mixtures (nD) is measured at 298.15†K. The excess molar volumes VE and deviation from additivity rules of viscosities [eta]E and refractive index [Delta][phi]n, of pyrrolidinium octanoate solutions were then deduced from the experimental results as well as apparent molar volumes V[phi]i, partial molar volumes and thermal expansion coefficients [alpha]p. The excess molar volumes VE are negative over the entire mole fraction range for mixture with water, acetonitrile, and methanol indicating strong hydrogen-bonding interaction for the entire mole fraction. In the case of longest carbon chain alcohols (such as ethanol and n-butanol)†+†pyrrolidinium octanoate solutions, the VE variation as a function of the composition describes an S shape. The deviation from additivity rules of viscosities is negative over the entire composition range for the acetonitrile, methanol, ethanol, and butanol, and becomes less negative with increasing temperature. Whereas, [eta]E of the {[Pyrr][C7CO2]†+†water} binary mixtures is positive in the whole mole fraction range and decreases with increasing temperature. the excess Gibbs free energies of activation of viscous flow ([Delta]G*E) for these systems were calculated. The deviation from additivity rules of refractive index [Delta][phi]n are positive over the whole composition range and approach a maximum of 0.25 in PIL mole fraction for all systems. The magnitude of deviation for [Delta][phi]n describes the following order: water†>†methanol†>†acetonitrile†>†ethanol. Results have been discussed in terms of molecular interactions and molecular structures in these binary mixtures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the addition of water on the absorption of carbon dioxide by the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide was studied experimentally by measuring the low-pressure carbon dioxide solubility and the viscosity of the liquid solvent at temperatures from 303 to 323 K. Water is only partially miscible with the ionic liquid up to a mole fraction of 0.302 at 293 K, 0.321 at 303 K and 0.381 at 323 K. It was observed that the solubility of carbon dioxide decreases with the quantity of water from a mole fraction of 2.63 × 10-2 for the pure ionic liquid at 303.4 K to a value of 1.88 × 10-2, a reduction of 30% of the solubility, for a mole fraction of water of 0.28. The viscosity of the liquid solvent also decreases, up to 40% at 303 K, from 28.6 mPa s for the pure ionic liquid to 16.4 mPa s for a water mole fraction of 0.302.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New protic ionic liquids (PILs) based on the morpholinium, N-methylmorpholinium, and N-ethyl morpholinium cations have been synthesized through a simple and atom-economic neutralization reaction between N-alkyl morpholine and formic acid. Their densities, refractive indices, thermal properties, and electrochemical windows have been measured. The temperature dependence of their dynamic viscosity and ionic conductivity have also been determined. The results allow us to classify them according to a classical Walden diagram and to evaluate their “fragility”. In addition, morpholinium based PILs exhibit a large electrochemical window as compared to other protic ionic liquids (up 2.91 V) and possess relatively high ionic conductivities of 10-16.8 mS·cm-1 at 25 °C and 21-29 mS·cm-1 at 100 °C, and a residual conductivity close to 1.0 mS·cm-1 at -15 °C. PIL-water mixtures exhibit high ionic conductivities up to 65 mS·cm-1 at 25 °C and 120 mS·cm-1 at 100 °C for morpholinium formate with water weight fraction ww = 0.6. Morpholinium based PILs studied in this work have a low cost and low toxicity, are good ionic liquids, and prove extremely fragile. They have wide applicable perspectives as electrolytes for fuel cell devices, thermal transfer fluids, and acid-catalyzed reaction media as replacements of conventional solvents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic conductivities of twelve protic ionic liquids (PILs) and their mixtures with water over the whole composition range are reported at 298.15 K and atmospheric pressure. The selected PILs are the pyrrolidinium-based PILs containing nitrate, acetate or formate anions; the formate-based PILs containing diisopropylethylammonium, amilaminium, quinolinium, lutidinium or collidinium cations; and the pyrrolidinium alkylcarboxylates, [Pyrr][CnH2n+1COO] with n = 5–8. This study was performed in order to investigate the influence of molecular structures of the ions on the ionic conductivities in aqueous solutions. The ionic conductivities of the aqueous solutions are 2–30 times higher than the conductivities of pure PILs. The maximum in conductivity varies from ww=0.41???to???0.74 and is related to the nature of cations and anions. The molar conductance and the molar conductance at infinite dilution for (PIL + water) solutions are then determined. Self-diffusion coefficients of the twelve protic ionic liquids in water at infinite dilution and at 298.15 K are calculated by using the Nernst–Haskell, the original and the modified Wilke–Chang equations. These calculations show that similar values are obtained using the modified Wilke–Chang and the Nernst–Haskell equations. Finally, the effective hydrodynamic (or Stokes) radius of the PILs was determined by using the Stokes–Einstein equation. A linear relationship was established in order to predict this radius as a function of the anion alkyl chain length in the case of the pyrrolidinium alkylcarboxylates PILs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for prevention of sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of the entry inhibitors maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously over 28 days from rings in vitro, at rates of 100-2500 µg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady state fluid concentrations were ~106 fold greater than IC50 values for SHIV-162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. Pretreatment of macaques with Depo-Provera® (DP), as commonly used in macaque challenge studies, was shown to significantly modify the bio-distribution of the inhibitors, but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments, and also for ring performance during the human female menstrual cycle. Copyright © 2012, American Society for Microbiology. All Rights Reserved.