78 resultados para Automatic Editing
Resumo:
It is convenient and effective to solve nonlinear problems with a model that has a linear-in-the-parameters (LITP) structure. However, the nonlinear parameters (e.g. the width of Gaussian function) of each model term needs to be pre-determined either from expert experience or through exhaustive search. An alternative approach is to optimize them by a gradient-based technique (e.g. Newton’s method). Unfortunately, all of these methods still need a lot of computations. Recently, the extreme learning machine (ELM) has shown its advantages in terms of fast learning from data, but the sparsity of the constructed model cannot be guaranteed. This paper proposes a novel algorithm for automatic construction of a nonlinear system model based on the extreme learning machine. This is achieved by effectively integrating the ELM and leave-one-out (LOO) cross validation with our two-stage stepwise construction procedure [1]. The main objective is to improve the compactness and generalization capability of the model constructed by the ELM method. Numerical analysis shows that the proposed algorithm only involves about half of the computation of orthogonal least squares (OLS) based method. Simulation examples are included to confirm the efficacy and superiority of the proposed technique.
A new speech analysis system: ASSESS (Automatic Statistical Summary of Elementary Speech Structures)
Resumo:
Speeding up sequential programs on multicores is a challenging problem that is in urgent need of a solution. Automatic parallelization of irregular pointer-intensive codes, exempli?ed by the SPECint codes, is a very hard problem. This paper shows that, with a helping hand, such auto-parallelization is possible and fruitful. This paper makes the following contributions: (i) A compiler framework for extracting pipeline-like parallelism from outer program loops is presented. (ii) Using a light-weight programming model based on annotations, the programmer helps the compiler to ?nd thread-level parallelism. Each of the annotations speci?es only a small piece of semantic information that compiler analysis misses, e.g. stating that a variable is dead at a certain program point. The annotations are designed such that correctness is easily veri?ed. Furthermore, we present a tool for suggesting annotations to the programmer. (iii) The methodology is applied to autoparallelize several SPECint benchmarks. For the benchmark with most parallelism (hmmer), we obtain a scalable 7-fold speedup on an AMD quad-core dual processor. The annotations constitute a parallel programming model that relies extensively on a sequential program representation. Hereby, the complexity of debugging is not increased and it does not obscure the source code. These properties could prove valuable to increase the ef?ciency of parallel programming.