115 resultados para Artificial inoculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explores using artificial neural networks to predict the rheological and mechanical properties of underwater concrete (UWC) mixtures and to evaluate the sensitivity of such properties to variations in mixture ingredients. Artificial neural networks (ANN) mimic the structure and operation of biological neurons and have the unique ability of self-learning, mapping, and functional approximation. Details of the development of the proposed neural network model, its architecture, training, and validation are presented in this study. A database incorporating 175 UWC mixtures from nine different studies was developed to train and test the ANN model. The data are arranged in a patterned format. Each pattern contains an input vector that includes quantity values of the mixture variables influencing the behavior of UWC mixtures (that is, cement, silica fume, fly ash, slag, water, coarse and fine aggregates, and chemical admixtures) and a corresponding output vector that includes the rheological or mechanical property to be modeled. Results show that the ANN model thus developed is not only capable of accurately predicting the slump, slump-flow, washout resistance, and compressive strength of underwater concrete mixtures used in the training process, but it can also effectively predict the aforementioned properties for new mixtures designed within the practical range of the input parameters used in the training process with an absolute error of 4.6, 10.6, 10.6, and 4.4%, respectively.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dapivirine mucoadhesive gels and freeze-dried tablets were prepared using a 3 x 3 x 2 factorial design. An artificial neural network (ANN) with multi-layer perception was used to investigate the effect of hydroxypropyl-methylcellulose (HPMC): polyvinylpyrrolidone (PVP) ratio (XI), mucoadhesive concentration (X2) and delivery system (gel or freeze-dried mucoadhesive tablet, X3) on response variables; cumulative release of dapivirine at 24 h (Q(24)), mucoadhesive force (F-max) and zero-rate viscosity. Optimisation was performed by minimising the error between the experimental and predicted values of responses by ANN. The method was validated using check point analysis by preparing six formulations of gels and their corresponding freeze-dried tablets randomly selected from within the design space of contour plots. Experimental and predicted values of response variables were not significantly different (p > 0.05, two-sided paired t-test). For gels, Q(24) values were higher than their corresponding freeze-dried tablets. F-max values for freeze-dried tablets were significantly different (2-4 times greater, p > 0.05, two-sided paired t-test) compared to equivalent gets. Freeze-dried tablets having lower values for X1 and higher values for X2 components offered the best compromise between effective dapivirine release, mucoadhesion and viscosity such that increased vaginal residence time was likely to be achieved. (C) 2009 Elsevier B.V. All rights reserved.